
CS621 Handouts Complete

Parallel and Distributed Computing (Virtual University of Pakistan)

Scan to open on Studocu

Studocu is not sponsored or endorsed by any college or university

CS621 Handouts Complete

Parallel and Distributed Computing (Virtual University of Pakistan)

Scan to open on Studocu

Studocu is not sponsored or endorsed by any college or university
Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row/document/virtual-university-of-pakistan/parallel-and-distributed-computing/cs621-handouts-complete/80211296?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row/course/virtual-university-of-pakistan/parallel-and-distributed-computing/6641749?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row/document/virtual-university-of-pakistan/parallel-and-distributed-computing/cs621-handouts-complete/80211296?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row/course/virtual-university-of-pakistan/parallel-and-distributed-computing/6641749?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

1

CS621 Parallel and Distributed Compu琀椀ng

About The Course

Topic

1) Introduc琀椀on of Parallel and

Distributed Compu琀椀ng

2) Classi昀椀ca琀椀on for Computer Organiza琀椀on

3) Interconnec琀椀on Networks/Topologies

4) Concurrency Control & Memory Hierarchies

5) Memory Consistency Model

6) Fault Tolerance & Load Balancing

7) Heterogeneity / GPU Architecture

 and Programming

8) Message Passing Interface (MPI)

9) Mul琀椀threaded Programming

10) Parallel Algorithms & Architectures

11) Parallel I/O, Performance Analysis and Tuning Power

12) Scalability And Performance Studies

13) Programming Models, Scheduling and

Storage Systems

14) Synchroniza琀椀on and OpenMP

15) OpenMP, Types of Distributed Systems

Why study Parallel Compu琀椀ng?

1. Today, serial computers do not exists.

2. Even, your mobile phone is a parallel machine.

3. CPU’s Clock frequencies are ge琀�ng lower.

4. Number of processors are increasing.

5. Applica琀椀on will get slower, if we don’t learn the skill to develop parallel programs

Week 1

What is Compu琀椀ng?

Objec琀椀ves

Introduc琀椀on of Compu琀椀ng.

History of Compu琀椀ng.

What is Compu琀椀ng

“Compu琀椀ng is the process to complete a given goal-oriented task by using computer technology.”

Compu琀椀ng may include the design and development of so昀琀ware and hardware systems for broad range of purposes.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

2

Used for structuring, processing and managing any kind of informa琀椀on - to aid in the pursuit of scien琀椀昀椀c studies and

making intelligent systems.

History of Compu琀椀ng

Batch Era

Time Sharing Era

Desktop Era

Network Era

Batch Era: Execu琀椀on of series of programs on a computer without manual interven琀椀on.

Time Sharing: Sharing of compu琀椀ng resource among many users by means of mul琀椀programming and mul琀椀-tasking.

Desktop Era: A personal computer provides compu琀椀ng power to one user.

Network Era: Systems with shared memory and distributed memory.

Serial Vs. Parallel Compu琀椀ng

Objec琀椀ves

Serial Compu琀椀ng.

Parallel Compu琀椀ng.

Di昀昀erence between serial and parallel compu琀椀ng

Serial Compu琀椀ng

“Serial compu琀椀ng is a type of processing in which one task is completed at a 琀椀me and all the tasks are executed by

the processor in a sequence.”

Parallel Compu琀椀ng

“Parallel compu琀椀ng is a type of compu琀椀ng architecture in which several processors simultaneously execute mul琀椀ple,

smaller calcula琀椀ons broken down from an overall larger, complex problem.”

Serial vs parallel Compu琀椀ng

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

3

Di昀昀erence between Serial and parallel Compu琀椀ng

Serial Compu琀椀ng

Parallel Compu琀椀ng

Are uniprocessor systems.

Are mul琀椀processor systems.

Can execute one instruc琀椀on at a 琀椀me Can execute mul琀椀ple instruc琀椀ons

At a 琀椀me

Speed is limited.

No limita琀椀on on speed.

Lower performance.

Higher performance.

Examples: EDVAC, BINAC, and LGP-30.

Example: Window 7, 8 and 10.

Introduc琀椀on to Parallel Compu琀椀ng

Objec琀椀ves

Parallel Compu琀椀ng

Mul琀椀-Processer

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

4

Mul琀椀-Core

Introduc琀椀on to Parallel Compu琀椀ng

“Parallel Compu琀椀ng is the simultaneous execu琀椀on of the same task (split up and adapted) on mul琀椀ple processors in

order to obtain faster results.”

It is a kind of compu琀椀ng architecture where the large problems break into independent, smaller, usually similar parts

that can be processed in one go. It is done by mul琀椀ple CPUs communica琀椀ng via shared memory, which combines

results upon comple琀椀on. It helps in performing large computa琀椀ons as it divides the large problem between more

than one processor.

HPC: High Performance/Produc琀椀vity Compu琀椀ng

Technical Compu琀椀ng

Cluster compu琀椀ng

The term parallel compu琀椀ng architecture some琀椀mes used for a computer with more than one processor available for

processing.

The recent mul琀椀core processor (chips with more than one processor core) are some commercial examples which

bring parallel compu琀椀ng to the desktop.

Mul琀椀-processor

 More than one CPU works together to carry out computer instruc琀椀ons or programs.

Mul琀椀-core

Is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of

which reads and executes program instruc琀椀ons.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

5

Principles of Parallel Compu琀椀ng

Objec琀椀ves

Finding enough parallelism

Scale

Locality

Load balance

Coordina琀椀on and Synchroniza琀椀on

Performance modeling

Finding Enough Parallelism

Conven琀椀onal architectures coarsely comprise of a processor, memory system, and the data-path. Each of these

components' present signi昀椀cant performance bo琀琀lenecks. Parallelism addresses each of these components in

signi昀椀cant ways.

Scale

Parallelism overhead includes cost of star琀椀ng a head, accessing data, communica琀椀ng shared data, synchroniza琀椀on

and extra computa琀椀on. Algorithms needs su昀케ciently large units of work to run fast in parallel

Locality

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

6

Parallel processors collec琀椀vely have large and fast cache. The memory addresses are distributed across the

processors, a processor may have faster access to memory loca琀椀ons mapped locally than to memory loca琀椀ons

mapped to other processors

Load Balance

Determines the workload, divide up evenly before staring in case of sta琀椀c load balancing but in dynamic load balance

workload changes dynamically, need to rebalance dynamically.

Coordina琀椀on and Synchroniza琀椀on

Several kind of synchroniza琀椀on is needed by processes coopera琀椀ng to perform computa琀椀on

Performance Modeling

More e昀케cient programming models and tools formulated for massively parallel supercomputers.

Why Use Parallel Compu琀椀ng?

Objec琀椀ves

Iden琀椀fying the aspects that make parallel compu琀椀ng more useful.

Compu琀椀ng power

Modern consumer grade compu琀椀ng hardware comes equipped with mul琀椀ple central processing units (CPUs) and/or

graphics processing units (GPUs) that can process many sets of instruc琀椀ons simultaneously

Performance

Theore琀椀cal performance steadily increased, due to the fact that performance is propor琀椀onal to the product of the

clock frequency and the number of cores.

Scalability

Problem can be scaled up from size to sizes that were out of reach with a serial applica琀椀on. The larger problem sizes

are enabled by the larger amounts of main memory, disk storage, bandwidth over networks and to disk, and CPUs

Solve large problems

Solve large problems by breaking down larger problems into smaller, independent, o昀琀en similar parts that can be

executed simultaneously by mul琀椀ple processors communica琀椀ng via shared memory. Can solve large problems like

Web search engines, processing millions of transac琀椀on per second, etc.

Cost

the cost of computa琀椀on would reduce if we are to deploy parallel computa琀椀on than sequen琀椀al computa琀椀on.

Provide concurrency

Parallelism leads naturally to Concurrency. For example, Several processes trying to print a 昀椀le on a single printer

Week 2

Introduc琀椀on to Distributed Compu琀椀ng

Detailed explana琀椀on of distributed compu琀椀ng.

Introduc琀椀on to Distributed Compu琀椀ng

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

7

“A distributed system is a collec琀椀on of independent computers that appears to its users as a single coherent

system.”

In distributed compu琀椀ng • We have mul琀椀ple autonomous computers which seems to the user as single system. • There is no shared memory and computers communicate with each other through message

passing. • A single task is divided among di昀昀erent computers.

Uses or coordinates physically separate compu琀椀ng resources: • Grid compu琀椀ng • Cloud Compu琀椀ng

Why Use Distributed Compu琀椀ng?

Objec琀椀ve

Iden琀椀fying the aspects that makes distributed compu琀椀ng more useful.

Heterogeneity

The Internet enables users to access services and run applica琀椀ons over a heterogeneous collec琀椀on of computers and

networks.

Distribu琀椀on Transparency

A distributed system that is able to present itself to users and applica琀椀ons as if it were only a single computer system

is said to be transparent.

Openness

An open distributed system is a system that o昀昀ers services according to standard rules that describe the syntax and

seman琀椀cs of those services.

Resiliency

With mul琀椀ple computers, redundancies are implemented to ensure that a single failure doesn't equate to systems-

wide failure.

Scalability

Scalability of a distributed system can be measured along at least three di昀昀erent dimensions: a system can be

scalable with respect to its size, a geographically scalable system, a system can be administra琀椀vely scalable.

Resources accessibility

The main goal of a distributed system is to make it easy for the users to access remote resources, and to share them

in a controlled and e昀케cient way.

Concurrency

Concurrency between programs sharing data is generally kept under control through synchroniza琀椀on mechanisms for

mutual exclusion and transac琀椀on.

Fault tolerance, Error recovery

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

8

Fault tolerance is an important aspect in distributed systems design. A system is fault tolerant if it can con琀椀nue to

operate in the presence of failures.

Di昀昀erence between Parallel and Distributed Compu琀椀ng

Objec琀椀ves

Iden琀椀fying the key di昀昀erences between parallel and distributed compu琀椀ng

Distributed compu琀椀ng is o昀琀en used in tandem with parallel compu琀椀ng. Parallel compu琀椀ng on a single computer uses

mul琀椀ple processors to process tasks in parallel, whereas distributed parallel compu琀椀ng uses mul琀椀ple compu琀椀ng

devices to process those tasks.

Applica琀椀ons of Parallel and Distributed Compu琀椀ng

Objec琀椀ves

Scope of parallel and distributed compu琀椀ng.

Science

• Global climate modeling

• Biology: genomics; protein folding; drug design

• Astrophysical modeling

• Computa琀椀onal Chemistry

• Computa琀椀onal Material Sciences and Nano sciences

Engineering

• Semiconductor design

• Earthquake and structural modeling

• Computa琀椀on 昀氀uid dynamics (airplane design)

• Combus琀椀on (engine design)

• Crash simula琀椀on

Business

• Financial and economic modeling

• Transac琀椀on processing, web services and search engines

Defense

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

9

• Nuclear weapons -- test by simula琀椀ons

• Cryptography

P2P Network

• eDonkey, BitTorrent, Skype, …

Google

• 1500+ Linux machines behind Google search engine

Issues in Parallel and Distributed Compu琀椀ng

Failure Handling

Failures, like in any program, are a major problem. With so many processes and users, the consequences of failures

are exacerbated.

Scalability

As a distributed system is scaled, several factors need to be taken into account: size, geography, and administra琀椀on;

and their associated problems like overloading, control and reliability

Security

As connec琀椀vity and sharing increase, security is becoming increasingly important. Increased connec琀椀vity can also

lead to unwanted communica琀椀on, such as electronic junk mail, o昀琀en called spam.

Process synchroniza琀椀on

One of the most important issues that engineers of distributed systems are facing is synchronizing computa琀椀ons

consis琀椀ng of thousands of components. Current methods of synchroniza琀椀on like semaphores, monitors, barriers,

remote procedure call, object method invoca琀椀on, and message passing, do not scale well.

Resource management

In distributed systems, objects consis琀椀ng of resources are located on di昀昀erent places. Rou琀椀ng is an issue at the

network layer of the distributed system and at the applica琀椀on layer. Resource management in a distributed system

will interact with its heterogeneous nature

Communica琀椀on and Latency

Distributed Systems have become more e昀昀ec琀椀ve with the advent of Internet but there are certain requirements for

performance, reliability etc. E昀昀ec琀椀ve approaches to communica琀椀on should be used.

Parallel and Distributed Compu琀椀ng E昀昀orts

Before a program is wri琀琀en or a piece of so昀琀ware is developed, it must 昀椀rst go through a design process.

For parallel and distributed programs, the design process will include three issues:

Decomposi琀椀on

Decomposi琀椀on is the process of dividing up the problem and the solu琀椀on into parts: logical areas and logical

resources.

One of the primary issues of concurrent programming is iden琀椀fying a natural WBS(Work breakdown structure) for

the so昀琀ware solu琀椀on at hand.

Communica琀椀on

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

10

Following issues must be considered when designing parallel or distributed systems:

Important Ques琀椀ons: • How will this communica琀椀on be performed if the parts are in di昀昀erent processes or di昀昀erent

computers? • Do the di昀昀erent parts need to share any memory? • How will one part of the so昀琀ware know when the other part is done? • Which part starts 昀椀rst? • How will one component know if another component has failed?

Synchroniza琀椀on

The WBS designates who does what.

When mul琀椀ple components of so昀琀ware are working on the same problem, they must be coordinated.

The components' order of execu琀椀on must be coordinated. . Do all the parts start at the same 琀椀me or does some

work while others wait?

What two or more components need access to the same resource?

Who gets it 昀椀rst? If some of the parts 昀椀nish their work long before the other parts, should they be assigned new

work?

Who assigns the new work in such cases?

Week 3

Shared Memory

Objec琀椀ves

• Introduc琀椀on of Shared Memory.

• Architecture of Shared Memory.

“Shared memory is a type of memory architecture that allows mul琀椀ple processors or threads to access the same

memory space. In the context of distributed and parallel compu琀椀ng, shared memory can be used to facilitate

communica琀椀on and synchroniza琀椀on between di昀昀erent processes or threads.”

• Processors have direct access to global memory and I/O

through bus or fast switching network

• Cache Coherency Protocol guarantees consistency

of memory and I/O accesses

• Each processor also has its own memory (cache)

• Data structures are shared in global address space

• Concurrent access to shared memory must be coordinated

• Programming Models

• Mul琀椀threading (Thread Libraries)

• OpenMP

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

11

Architecture of Shared Memory:

Distributed Memory

“Distributed memory refers to a type of parallel compu琀椀ng architecture where each

processor has its own private memory, and communica琀椀on between processors happens

through message passing. In this architecture, the memory of one processor is not directly

accessible by other processors, and communica琀椀on between processors occurs explicitly

through messages that are sent and received.”

• Each Processor has direct access only to its local memory

• Processors are connected via high-speed interconnect

• Data structures must be distributed

• Data exchange is done via explicit processor-to-processor communica琀椀on:

send/receive messages

• Programming Models

• Widely used standard: MPI

• Others: PVM, PARMACS, Express, P4, Chameleon, etc.

Architecture of Distributed Memory:

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

12

Flynn’s classi昀椀ca琀椀on of computer architectures

Objec琀椀ves

• What is Flynn’s classi昀椀ca琀椀on of computer architectures?

• Basis for Flynn’s classi昀椀ca琀椀on.

• Types of Flynn’s classi昀椀ca琀椀on.

Flynn’s classi昀椀ca琀椀on of computer architectures (1966):

“Michael J Flynn classi昀椀ed computers on the basis of mul琀椀plicity of instruc琀椀on stream and

data streams in a computer system.”

• Instruc琀椀on stream

• Data stream

• Single vs. mul琀椀ple

The four classi昀椀ca琀椀ons de昀椀ned by Flynn are based upon the number of concurrent

instruc琀椀on (or control) and data streams available in the architecture.

• Single Instruc琀椀on Single Data (SISD)

• Single Instruc琀椀on Mul琀椀ple Data (SIMD)

• Mul琀椀ple Instruc琀椀on Mul琀椀ple Data (MIMD)

• Mul琀椀ple Instruc琀椀on Single Data (MISD)

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

13

SISD (Single-Instruc琀椀on Single-Data)

Objec琀椀ves

• Introduc琀椀on of SISD.

• Architecture of SISD.

SISD (Single-Instruc琀椀on Single-Data)

 “Refers to the tradi琀椀onal von Neumann architecture where a single sequen琀椀al processing

element (PE) operates on a single stream of data.”

SISD (Single-Instruc琀椀on Single-Data) Architecture

• Conven琀椀onal single-processor von Neumann computers are classi昀椀ed as SISD systems.

• A typical non-pipelined architecture with general purpose registers as well as some dedicated special

registers like:

• Program Counter (PC),

• Memory data registers (MDR),

• Memory address registers (MAR) and

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

14

• Instruc琀椀on registers (IR).

• Perform the same opera琀椀on on mul琀椀ple data operands concurrently.

• Concurrency of processing rather than concurrency of execu琀椀on.

• Serial computer

• Example: A personal computer processing instruc琀椀ons and data on single processor.

SIMD (Single-Instruc琀椀on Mul琀椀-Data)

Objec琀椀ves

• Introduc琀椀on of SIMD.

• SIMD Architecture.

• SIMD Schemes.

SIMD (Single-Instruc琀椀on Mul琀椀-Data)

“SIMD is a mul琀椀ple-processing system that performs one opera琀椀on simultaneously on more than one piece

of data.”

• All processors in a parallel computer execute the same instruc琀椀ons but operate on di昀昀erent data at

the same 琀椀me.

• Processors run in synchronous, lockstep func琀椀on.

• Shared or distributed memory

• SIMD instruc琀椀ons give very speedups in things like linear algebra, or image/video

manipula琀椀on/encoding/decoding, etc.

• Examples: Wireless MMX unit, CM-1, CM-2, DAP, MasPar MP-1

SIMD (Single-Instruc琀椀on Mul琀椀-Data) Architecture

• Consists of 2 parts:

• A front-end Von Neumann computer.

• A processor array: connected to the memory bus of the front end.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

15

SIMD (Single-Instruc琀椀on Mul琀椀-Data) Schemes

• Classi昀椀ed into two con昀椀gura琀椀on schemes

• Scheme 1 – Each processor has its own local memory.

• Scheme 2 – Processors and memory modules communicate with each other via

interconnec琀椀on network.

Scheme 1

• SIMD Scheme 2

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

16

MISD (Mul琀椀ple-Instruc琀椀on Single-Data)

Objec琀椀ves

• Introduc琀椀on of MISD.

• MISD Architecture.

MISD (Mul琀椀ple-Instruc琀椀on Single-Data)

“A pipeline of mul琀椀ple independently execu琀椀ng func琀椀onal units opera琀椀ng on a single stream of data,

forwarding results from one func琀椀onal unit to the next."

MISD (Mul琀椀ple-Instruc琀椀on Single-Data) Architecture

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

17

• Special purpose computer

• Excellent for situa琀椀on where fault tolerance is cri琀椀cal

• Heterogeneous systems operate on the same data stream and must agree on the result

• Rarely used; some speci昀椀c use systems (space 昀氀ight control computers)

• Example: Systolic array

MIMD (Mul琀椀-Instruc琀椀on Mul琀椀-data)

Objec琀椀ves

• Introduc琀椀on of MIMD.

• MIMD Architecture.

• MIMD Shared Memory & Message Passing Architectures.

MIMD (Mul琀椀-Instruc琀椀on Mul琀椀-data)
“In MIMD all processors in a parallel computer can execute di昀昀erent instruc琀椀ons and operate on various

data at the same 琀椀me.”

MIMD (Mul琀椀-Instruc琀椀on Mul琀椀-data) Architecture

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

18

• MIMD processors can execute di昀昀erent programs on di昀昀erent processors.

• Each processor has a separate program, and an instruc琀椀on stream is generated from each program.

• Parallelism achieved by connec琀椀ng mul琀椀ple processors together.

• Di昀昀erent programs can be run simultaneously.

• Each processor can perform any opera琀椀on regardless of what other processors are doing.

• Examples: S-1, Cray-3, Cray T90, Cray T3E, Mul琀椀processor PCs and 370/168 MP

Special purpose computer

Shared or distributed memory

Made of mul琀椀ple processors and mul琀椀ple memory modules connected via some interconnec琀椀on network.

Classi昀椀ed into two con昀椀gura琀椀on schemes:

• Shared memory

• Message passing

Shared Memory Organiza琀椀on

• Inter-processor coordina琀椀on is accomplished by reading and wri琀椀ng in a global memory shared by

all processors.

• Any processor can access then local memory of any other processor.

• Typically consists of servers that communicate through a bus and cache memory controller.

Shared Memory Architecture

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

19

Message Passing Organiza琀椀on

• Point-to-Point

• Each processor has access to its own local memory.

• Communica琀椀ons are performed via send and receive opera琀椀ons.

• Message passing mul琀椀processors employ a variety of sta琀椀c networks in local communica琀椀ons.

• Must be synchronized among di昀昀erent processors.

Message Passing Architecture

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

20

SIMD-MIMD Comparison

Objec琀椀ves

• Comparison of SIMD-MIMD.

SIMD-MIMD Comparison

• SIMD computers require less hardware than MIMD computers (single control unit).

• SIMD is less expensive as compared to MIMD.

• SIMD follows synchronous processing where as, MIMD incorporates an asynchronous processing.

• In MIMD each processing elements stores its individual copy of the program which increases the

memory requirements. Conversely, SIMD requires less memory as it stores only one copy of the

program.

• MIMD is more complex and e昀케cient as compared to SIMD.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

21

Week 4

Introduc琀椀on to Fault Tolerance

Objec琀椀ves

• Introduc琀椀on of Fault Tolerance.

• Fault Classi昀椀ca琀椀on.

• Failure Classi昀椀ca琀椀on.

• Failure Masking.

Fault Tolerance

“A fault-tolerance system is one that con琀椀nues to provide the required func琀椀onality in the presence of fault/failure.”

• A characteris琀椀c feature of distributed systems is the no琀椀on of par琀椀al failure:

• A par琀椀al failure may happen when one component in a distributed system fails.

• This failure may a昀昀ect the proper opera琀椀on of other components, while at the same 琀椀me leaving yet

other components totally una昀昀ected.

• An important goal in distributed systems design is to construct the system in such a way that it can

automa琀椀cally recover from par琀椀al failures without seriously a昀昀ec琀椀ng the overall performance.

Fault Classi昀椀ca琀椀on

Faults are generally classi昀椀ed as transient, intermi琀琀ent, or permanent:

• Transient fault: Occurs once and then disappear. If the opera琀椀on is repeated, the fault goes away.

• Intermi琀琀ent fault: Occurs, then vanishes of its own accord, then reappears, and so on. A loose

contact on a connector will o昀琀en cause an intermi琀琀ent fault.

• Permanent fault: Is one that con琀椀nues to exist un琀椀l the faulty component is replaced. Burnt-out

chips, so昀琀ware bugs, and disk head crashes are examples of permanent faults.

Failure Classi昀椀ca琀椀on

Faults are generally classi昀椀ed into 昀椀ve categories

• Crash failure: A server halts but working correctly un琀椀l it halts.

• Omission failure: A server fails to respond to incoming requests.

• Timing failure: A server’s response lies outside the speci昀椀ed 琀椀me interval.

• Response failure: A server’s response is incorrect.

• Arbitrary failure: A server may produce the arbitrary responses at arbitrary 琀椀mes.

Failure Masking

“Failure masking is a fault tolerance technique that hides occurrence of failures from other processes.”

• The most common approach to failure masking is redundancy which is categorized into three types

• Informa琀椀on redundancy: Add extra bits to allow recovery from garbled bits.

• Time redundancy: Repeat an ac琀椀on if needed.

• Physical redundancy: Add extra equipment or processes so that the system can tolerate the loss or

malfunc琀椀oning of some components.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

22

Process Resilience

Objec琀椀ves

• Introduc琀椀on of Process Resilience

• Flat Groups versus Hierarchical Groups.

• Failure Masking and Replica琀椀ons

• Approaches for Replica琀椀ons

Process Resilience

“Process resilience incorporates techniques by which one or more processes can fail without seriously disturbing the

rest of the system.”

• Related to this issue is reliable mul琀椀cas琀椀ng, by which message transmission to a collec琀椀on of processes is

guaranteed to succeed.

• Reliable mul琀椀cas琀椀ng is o昀琀en necessary to keep processes synchronized.

• Protec琀椀on against process failures can be achieved by process replica琀椀on, organizing several iden琀椀cal

processes into a group.

• Groups are categorized into two categories: Flat Group and Hierarchy Group.

Flat Group

• All processes are equal.

• The processes make decisions collec琀椀vely.

• No single point of failure, but decision making is more complicated as consensus is required.

Hierarchical Group

• A single coordinator makes all decisions.

• Single point-of failure, however: decisions are easily and quickly made by the coordinator without 昀椀rst having

to get consensus.

• Group is transparent to its users; the whole group is dealt with as a single process.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

23

Failure Masking and Replica琀椀on

• By organizing a fault tolerant group of processes , we can protect a single vulnerable process.

• Two approaches to arranging the replica琀椀on of the group are:

• Primary-base protocols and Replicated-write protocols

Primary-Base Protocols

• Appears in the form of a primary-backup protocol

• A group of processes is organized in a hierarchical fashion in which a primary coordinates all write

opera琀椀ons.

• When the primary crashes, the backups execute some elec琀椀on algorithm to choose a new primary.

Replicated-Write Protocols

• Replicated-write protocols are used in the form of ac琀椀ve replica琀椀on, as well as by means of quorum-based

protocols.

• Solu琀椀ons correspond to organizing a collec琀椀on of iden琀椀cal processes into a 昀氀at group.

• These groups have no single point of failure, at the cost of distributed coordina琀椀on.

Reliable Client-Server Communica琀椀on

Objec琀椀ves

• Understanding of Reliable Client-Server Communica琀椀on

• RPC Seman琀椀cs in the Presence of Failures.

Reliable Client-Server Communica琀椀on

• Fault tolerance in distributed systems concentrates on faulty processes.

• However, communica琀椀on failures should also be considered .

• A communica琀椀on channel may exhibit crash, omission, 琀椀ming, and arbitrary failures.

Peer to Peer Communica琀椀on

• Reliable point-to-point communica琀椀on is established by making use of a reliable transport protocol, such as

TCP.

• TCP masks omission failures, which occur in the form of lost messages by using acknowledgments and

retransmissions.

• Crash failures of connec琀椀ons are not masked. The only way to mask such failures is to let the distributed

system a琀琀empt to automa琀椀cally set up a new connec琀椀on.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

24

RPC Seman琀椀cs in the Presence of Failures

• Remote Procedure Call (RPC) mechanism works well as long as both the client and server func琀椀on perfectly.

• Five classes of RPC failure can be iden琀椀昀椀ed:

• The client is unable to locate the server.

• The request message from the client to the server is lost

• The server crashes a昀琀er receiving a request.

• The reply message from the server to the client is lost.

• The client crashes a昀琀er sending a request.

Server in Client-Server Communica琀椀on

The sequence of events at a server is shown in Fig.

(a) A request arrives, is carried out, and a reply is sent.

(b) A request arrives and is carried out, just as before, but the server crashes before it can send the reply.

(c) Again, a request arrives, but this 琀椀me the server crashes before it can even be carried out and no reply is sent

back.

Server crashes are dealt with by implemen琀椀ng one of three possible implementa琀椀on philosophies:

• At least once seman琀椀cs: A guarantee is given that the RPC occurred at least once, but (also) possibly

more that once.

• At most once seman琀椀cs: A guarantee is given that the RPC occurred at most once, but possibly not

at all.

• No seman琀椀cs: Nothing is guaranteed, and client and servers take their chances

Client in Client-Server Communica琀椀on

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

25

When a client sends a request to a server and crashes before the server replies.At this point a computa琀椀on is

ac琀椀ve and no parent is wai琀椀ng for the result. Such an unwanted computa琀椀on is called an orphan. Four

orphan solu琀椀ons have been proposed:

• Extermina琀椀on: The orphan is simply killed-o昀昀.

• Reincarna琀椀on: Each client session has an epoch associated with it, making orphans easy to spot.

• Gentle reincarna琀椀on: When a new epoch is iden琀椀昀椀ed, an a琀琀empt is made to locate a requests

owner, otherwise the orphan is killed.

• Expira琀椀on: If the RPC cannot be completed within a standard amount of 琀椀me, it is assumed to have

expired.

Reliable Group Communica琀椀on

Objec琀椀ves

• Understanding of Reliable Group Communica琀椀on.

• Reliable-Mul琀椀cas琀椀ng Schemes.

Reliable Group Communica琀椀on

“Reliable mul琀椀cast services guarantee that all messages are delivered to all members of a process group.”

Basic Reliable-Mul琀椀cas琀椀ng Schemes

A simple solu琀椀on to reliable mul琀椀cas琀椀ng when all receivers are known and are assumed not to fail.

• The sending process assigns a sequence number to each message it mul琀椀casts.

• Assume that messages are received in the order they are sent.

• Each mul琀椀cast message is stored locally in a history bu昀昀er at the sender.

• Assuming the receivers are known to the sender, the sender simply keeps the message in its history

bu昀昀er un琀椀l each receiver has returned an acknowledgment.

• If a receiver detects it is missing a message, it may return a nega琀椀ve acknowledgment, reques琀椀ng

the sender for a retransmission.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

26

(a) Message transmission – note that the third receiver is expec琀椀ng 24.

(b) Repor琀椀ng feedback – the third receiver informs the sender.

Distributed Commit

Objec琀椀ves

• Introduc琀椀on of Distributed Commit

• Distributed Commit Protocol Phases.
Distributed Commit

“The distributed commit problem involves having an opera琀椀on being performed by each member of a process group,

or none at all.”

• In the case of reliable mul琀椀cas琀椀ng, the opera琀椀on is the delivery of a message

• With distributed transac琀椀ons, the opera琀椀on may be the commit of a transac琀椀on at a single site that takes part in the

transac琀椀on.

• Other examples of distributed commit, and how it can be solved are discussed in Tanisch (2000).

• Commit protocol is distributed into three types:

• Single-phase commit

• Two-phase commit

• Three-phase commit.

One-Phase Commit Protocol:

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

27

• Coordinator tells all other processes that are also involved, called par琀椀cipants, whether to (locally)

perform the opera琀椀on in ques琀椀on

• If one of the par琀椀cipants cannot perform the opera琀椀on, there is no way to tell the coordinator

• It cannot e昀케ciently handle the failure of the coordinator.

• The solu琀椀ons:

Two-Phase and Three-Phase Commit Protocols

Two-Phase Commit Protocol

“Assuming that no failures occur, the protocol consists of the following two phases, each consis琀椀ng of two

steps: The 昀椀rst phase is the vo琀椀ng phase, and the second phase is the decision phase.”

• The coordinator sends a VOTE_REQUEST message to all par琀椀cipants.

• A group member returns VOTE_COMMIT if it can commit locally, otherwise VOTE_ABORT message.

• All votes are collected by the coordinator.

• A GLOBAL_COMMIT is sent if all the group members voted to commit.

• If one group member voted to abort, a GLOBAL_ABORT is sent.

• Group members then COMMIT or ABORT based on the last message received from the coordinator

(a) The 昀椀nite state machine for the coordinator in 2PC.

(b) The 昀椀nite state machine for a par琀椀cipant.

• It can lead to both the coordinator and the par琀椀cipants blocking, which may lead to the dreaded

deadlock.

• If the coordinator crashes, the par琀椀cipants may not be able to reach a 昀椀nal decision, and they may,

therefore, block un琀椀l the coordinator recovers.

• Two-Phase Commit is known as a blocking-commit protocol for this reason.

• The solu琀椀on: Three-Phase Commit Protocol

Three-Phase Commit Protocol

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

28

• Skeen (1981) developed a variant of 2PC, called the three-phase commit protocol (3PC), that avoids

blocking processes in the presence of fail-stop crashes.

• The states of the coordinator and each par琀椀cipant sa琀椀sfy the following two condi琀椀ons:

• There is no single state from which it is possible to make a transi琀椀on directly to either a

COMMIT or an ABORT state.

• There is no state in which it is not possible to make a 昀椀nal decision, and from which a

transi琀椀on to a COMMIT state can be made.

(a) The 昀椀nite state machine for the coordinator in 3PC.

(b) The 昀椀nite state machine for a par琀椀cipant.

Recovery

Objec琀椀ves

• Basic Concept of Recovery

• Types of Recovery

Recovery

“The whole idea of error recovery is to replace an erroneous state with an error-free state. Once a failure has

occurred, it is essen琀椀al that the process where the failure happened recovers to a correct state.”

• Recovery from an error is fundamental to fault tolerance. Two main forms of recovery are:

• Backward Recovery: Return the system to some previous correct state (using checkpoints), then

con琀椀nue execu琀椀ng.

• Forward Recovery: When the system has entered an erroneous state, instead of moving back to a

previous, checkpointed state, an a琀琀empt is made to bring the system in a correct new state from

which it can con琀椀nue to execute

Backward Recovery

• Advantages:

• Generally applicable method independent of any speci昀椀c system or process.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

29

• It can be integrated into (the middleware layer) of a distributed system as a general-purpose service.

• Disadvantages:

• Restoring a system or process to a previous state is generally a rela琀椀vely costly opera琀椀on in terms of

performance.

• Backward error recovery mechanisms are independent of the distributed applica琀椀on for which they

are actually used, no guarantees can be given that once recovery has taken place, the same or similar

failure will not happen again.

Forward Recovery

• Advantages:

• Generally, have low overhead.

• Disadvantages:

• It has to be known in advance which errors may occur. Only in that case is it possible to correct those

errors and move to a new state.

• When an error occurs, the recovery mechanism then knows what to do to bring the system forward

to a correct state.

Week 5

Introduc琀椀on to Load Balancing

Objec琀椀ves

• Introduc琀椀on of Load Balancing.

• Issues in Load Balancing

Introduc琀椀on to Load Balancing

“The goal of par琀椀琀椀oning is to distribute the computa琀椀on load to each processing element such that all processing

elements become neither overloaded nor idle and all processors can 昀椀nish their computa琀椀on at about the same

琀椀me.”

• Distributed compu琀椀ng system provides high performance environment that are able to provide high

processing power

• Deals with distribu琀椀on of processes among processors connected by a network

• For homogeneous parallel systems, the computa琀椀on load is distributed as evenly as possible in a parallel

computer.

• For heterogeneous parallel system, the computa琀椀on load is distributed according to the compu琀椀ng power of

each processor.

Week 5

Introduc琀椀on to Load Balancing

Objec琀椀ves

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

30

• Introduc琀椀on of Load Balancing.

• Issues in Load Balancing

Introduc琀椀on to Load Balancing

“The goal of par琀椀琀椀oning is to distribute the computa琀椀on load to each processing element such that all processing

elements become neither overloaded nor idle and all processors can 昀椀nish their computa琀椀on at about the same

琀椀me.”

• Distributed compu琀椀ng system provides high performance environment that are able to provide high

processing power.

• Deals with distribu琀椀on of processes among processors connected by a network.

• For homogeneous parallel systems, the computa琀椀on load is distributed as evenly as possible in a parallel

computer.

• For heterogeneous parallel system, the computa琀椀on load is distributed according to the compu琀椀ng power of

each processor.

Issues in Load Balancing

A load balancing strategy needs to resolve following issues:

• What load informa琀椀on (measurements) can be used.

• When to invoke balancing, i.e., condi琀椀ons to balance.

• Which nodes make the load balancing decision.

• How should old data be handled.

• How load migra琀椀ons are to be managed.

Mapping Techniques for Load Balancing

Objec琀椀ves

• Understanding of Mapping Techniques for Load Balancing.

• The need of Mapping Techniques for Load Balancing

Mapping Techniques for Load Balancing

• The computa琀椀on domain is par琀椀琀椀oned into several subdomains and then mapped onto processors of a

parallel system with the objec琀椀ve that all tasks complete in the shortest amount of elapsed 琀椀me.

• In general, the number of subdomains equals to the number of processors in a parallel system.

• In order to achieve a small execu琀椀on 琀椀me, the overheads of execu琀椀ng the tasks in parallel must be

minimized.

Quality of Load Balancing Algorithm

• The quality of load balancing algorithms can be measured by two factor:

• Number of steps: Needed to get the balanced state.

• Extent of loads: Moves over the link to which nodes are connected.

Mapping Techniques for Load Balancing

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

31

• There are two key sources of overhead. The 琀椀me spent in inter-process interac琀椀on is one source of

overhead. Another important source of overhead is the 琀椀me that some processes may spend being idle.

• A good mapping of tasks onto processes must strive to achieve the twin objec琀椀ves:

• Reducing the amount of 琀椀me processes spend in interac琀椀ng with each other

• Reducing the total amount of 琀椀me some processes are idle while the others are engaged in

performing some tasks.

• Mapping techniques used in parallel algorithms can be broadly classi昀椀ed into two categories

• Sta琀椀c Mapping

• Dynamic Mapping.

• The parallel programming paradigm and the characteris琀椀cs of tasks and the interac琀椀ons among them

determine whether a sta琀椀c or a dynamic mapping is more suitable.

Sta琀椀c Mapping for Load Balancing

Objec琀椀ves

• Understanding of Sta琀椀c Mapping for Load Balancing.

• Advantages

• Disadvantages

Sta琀椀c Mapping for Load Balancing

“Sta琀椀c mapping techniques distribute the tasks among processes prior to the execu琀椀on of the algorithm.”

• Processes are assigned to the processors at compile 琀椀me.

• Once the process are assigned, no change or reassignment is possible at run 琀椀me.

• Need a good es琀椀mate of task sizes.

• Number of jobs on each node is 昀椀x.

• Scheduling decisions are made probabilis琀椀cally.

Advantages of Sta琀椀c Mapping

• Algorithms that make use of sta琀椀c mapping are in general easier to design and program

• Since the mapping is 昀椀xed, there is no need for communica琀椀on between processing nodes to determine task

alloca琀椀on.

This reduces communica琀椀on overhead and can improve performance.

• Less network tra昀케c due to load balancing related messages

Disadvantages of Sta琀椀c Mapping

• It is very di昀케cult to compute a-priori execu琀椀on 琀椀me.

• Lack of Fault Tolerance: Sta琀椀c mapping does not account for node failures, which can result in system

down琀椀me if a node fails.

• The process alloca琀椀on cannot be changed during execu琀椀on.

Schemes for Sta琀椀c Mapping

Objec琀椀ves

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

32

• Mappings Based on Data Par琀椀琀椀oning.

• Mappings Based on Task Par琀椀琀椀oning

• Hierarchical Mappings

Scheme for Sta琀椀c Mapping

• Sta琀椀c mapping is o昀琀en used in conjunc琀椀on with a decomposi琀椀on based on data par琀椀琀椀oning.

• Sta琀椀c mapping is also used for mapping certain problems that are expressed naturally by a sta琀椀c task-

dependency graph. Mapping schemes based on data par琀椀琀椀oning and task par琀椀琀椀oning are:

• Mappings Based on Data Par琀椀琀椀oning

• Mappings Based on Task Par琀椀琀椀oning

• Hierarchical Par琀椀琀椀oning

Mappings Based on Data Par琀椀琀椀oning

Mappings based on data par琀椀琀椀oning’s two of the most common ways of represen琀椀ng data in algorithms, namely,

arrays and graphs.

• Block Distribu琀椀on Schemes

• Block Array Distribu琀椀ons

• Cyclic and Block-Cyclic Distribu琀椀ons

• Randomized Block Distribu琀椀ons

Mappings Based on Data Par琀椀琀椀oning: Block Array Distribu琀椀on

The data par琀椀琀椀oning can be combined with the “owner-computes” rule to par琀椀琀椀on the computa琀椀on into subtasks.

The simplest data decomposi琀椀on schemes for dense matrices are 1-D block distribu琀椀on schemes.

In general, higher dimension decomposi琀椀on allows the use of higher number of processes.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

33

Mappings Based on Data Par琀椀琀椀oning: Cyclic and Block-Cyclic Distribu琀椀ons

The central idea behind a block-cyclic distribu琀椀on is to par琀椀琀椀on an array into many more blocks than the number of

available processes.

Then we assign the par琀椀琀椀ons (and the associated tasks) to processes in a round-robin manner so that each process

gets several non-adjacent blocks.

More precisely, in a one-dimensional block-cyclic distribu琀椀on of a matrix among p processes, the rows (columns) of

an n x n matrix are divided into ap groups of n/(ap).

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

34

Examples of one- and two-dimensional block-cyclic distribu琀椀ons among four processes. (a) The rows of the array are

grouped into blocks each consis琀椀ng of two rows, resul琀椀ng in eight blocks of rows. These blocks are distributed to four

processes in a wraparound fashion. (b) The matrix is blocked into 16 blocks each of size 4 x 4, and it is mapped onto a

2 x 2 grid of processes in a wraparound fashion.

Mappings Based on Data Par琀椀琀椀oning: Randomized Block Distribu琀椀on

Just like a block-cyclic distribu琀椀on, load balance is sought by par琀椀琀椀oning the array into many more blocks than the

number of available processes.

However, the blocks are uniformly and randomly distributed among the processes.

 A one-dimensional randomized block mapping of 12 blocks onto four process (i.e., a = 3) is shown 昀椀gure.

Mappings Based on Task Par琀椀琀椀oning

• Par琀椀琀椀oning a given task-dependency graph across processes.

• Determining an op琀椀mal mapping for a general task-dependency graph is an NP-complete problem.

• Excellent heuris琀椀cs exist for structured graphs

Mappings Based on Task Par琀椀琀椀oning: Mapping a Binary Tree Dependency Graph

Example illustrates the dependency graph of one view of quick-sort and how it can be assigned to processes in a

hypercube.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

35

Mappings Based on Task Par琀椀琀椀oning: Mapping a Sparse Graph

Reducing interac琀椀on overhead in sparse matrix-vector mul琀椀plica琀椀on by par琀椀琀椀oning the task-interac琀椀on graph.

Hierarchical Mappings

A hierarchical mapping can have many layers and di昀昀erent decomposi琀椀on and mapping techniques may be suitable

for di昀昀erent layers.”

• If the tasks are large enough, then a be琀琀er mapping can be obtained by a further decomposi琀椀on of the tasks

into smaller subtasks.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

36

• A single mapping is inadequate.

• Task mapping at the top layer and Data par琀椀琀椀oning within each level

• Sta琀椀c mapping based on hierarchical mappings can be used in a variety of applica琀椀ons, including scien琀椀昀椀c

simula琀椀ons, machine learning, and image processing.

An example of hierarchical mapping of a task-dependency graph. Each node represented by an array is a supertask.

The par琀椀琀椀oning of the arrays represents subtasks, which are mapped onto eight processes.

Dynamic Mapping for Load Balancing

Objec琀椀ves

• Introduc琀椀on of Dynamic Mapping

• Advantages of Dynamic Mapping

• Disadvantages of Dynamic Mapping

Dynamic Mapping for Load Balancing

“Dynamic mapping techniques distribute the work among processes

during the execu琀椀on of the algorithm.”

• If tasks are generated dynamically, then they must be mapped dynamically too

• If task sizes are unknown, then a sta琀椀c mapping can poten琀椀ally lead to serious load-imbalances and dynamic

mappings are usually more e昀昀ec琀椀ve.

• If the amount of data associated with tasks is large

Advantages of Dynamic Mapping

• Greater Resource u琀椀liza琀椀on.

• Enhanced Load Balancing

• The process alloca琀椀on can be modi昀椀ed during execu琀椀on if required.

• Scalability: Dynamic mapping can scale the system up or down based on the workload.

Disadvantages of Dynamic Mapping

• Algorithms that require dynamic mapping are usually more complicated, par琀椀cularly in the message-passing

programming paradigm.

• Greater overhead due to process redistribu琀椀on.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

37

• Lack of determinism: Dynamic mapping introduces non-determinism into the system

Schemes for Dynamic Mapping

Objec琀椀ves

• Schemes for Dynamic Mapping

• Centralized Dynamic Mapping Scheme

• Distributed Dynamic Mapping Scheme.

Schemes for Dynamic Mapping

• Schemes for Dynamic Mapping

• Centralized Schemes

• Master Process

• Slave Processes

• Distributed Schemes

Centralized Dynamic Load Balancing Scheme

• All executable tasks are maintained in a common central data structure, or they are maintained by a special

process. If a special process is designated to manage the pool of available tasks, then it is o昀琀en referred to as

the master and the other processes that depend on the master to obtain work are referred to as slaves.

• Whenever a process has no work, it takes a por琀椀on of available work from the central data structure or the

master process.

• When a new task is generated, it is added to this centralized data structure or reported to the master

process.

• Centralized load balancing schemes are usually easier to implement than distributed schemes.

• If number of processes increases, master may become the bo琀琀leneck.

• Chunk scheduling: A process picks up mul琀椀ple tasks at once.

• Large chunk sizes may lead to signi昀椀cant load imbalances as well.

• Schemes to gradually decrease chunk size as the computa琀椀on progresses.

Distributed Dynamic Load Balancing Scheme

“In a distributed dynamic load balancing scheme, the set of executable tasks are distributed

among processes which exchange tasks at run 琀椀me to balance work. Each process can send

work to or receive work from any other process.”

• Alleviates the bo琀琀leneck in centralized schemes. Cri琀椀cal parameters of a distributed load balancing scheme

are as follows:

• How are the sending and receiving processes paired together?

• Is the work transfer ini琀椀ated by the sender or the receiver?

• How much work is transferred in each exchange?

• When is the work transfer performed?

Week 6

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

38

Concurrency Control

Objec琀椀ves

• What is Concurrency?

• Mechanisms for Concurrency Control

Concurrency Control

“Concurrency is the task of running two or more computa琀椀ons over the same 琀椀me interval. Two events are said to be

concurrent if they occur within the same 琀椀me interval.”

What is Concurrency?

• Concurrent doesn't necessarily mean at the same exact instant. For example, two tasks may occur

concurrently within the same second but with each task execu琀椀ng within di昀昀erent frac琀椀ons of the second.

• Concurrent tasks can execute in a single or mul琀椀processing environment

• In a single processing environment, concurrent tasks exist at the same 琀椀me and execute within the

same 琀椀me period by context switching.

• In a mul琀椀processor environment, if enough processors are free, concurrent tasks may execute at the

same instant over the same 琀椀me period. The determining factor for what makes an acceptable 琀椀me

period for concurrency is rela琀椀ve to the applica琀椀on.

Concurrency Control

• There must be an implicit or explicit control over concurrency. It is both hazardous and unsafe when mul琀椀ple

昀氀ows of execu琀椀ons simultaneously operate in the same address space without any kind of agreement on

ordered access. Two or more ac琀椀vi琀椀es might access the same data and thus induce data corrup琀椀on as well as

inconsistent or invalid applica琀椀on state.

• Mul琀椀ple ac琀椀vi琀椀es that work jointly on a problem need an agreement on their common progress. Both issues

represent fundamental challenges of concurrency and concurrent programming.

Synchroniza琀椀on and Coordina琀椀on are two basic approaches to tackle this challenge:

• Synchroniza琀椀on is a mechanism that controls access on shared resources between mul琀椀ple ac琀椀vi琀椀es.

It enforces exclusiveness and ordered access on the resource by di昀昀erent ac琀椀vi琀椀es.

• Coordina琀椀on aims at the orchestra琀椀on of collabora琀椀ng ac琀椀vi琀椀es.

Bene昀椀ts of Concurrency

• The overall 琀椀me to perform the series of tasks is reduced.

• Concurrent processes can reduce duplica琀椀on in code.

• The overall run琀椀me of the algorithm can be signi昀椀cantly reduced.

• Concurrency control can also increase the scalability of parallel and distributed compu琀椀ng systems

• Redundancy can make systems more reliable.

• More real-world problems can be solved than with sequen琀椀al algorithms alone

Concurrency Control: Basic Approaches to Achieving Concurrency

Objec琀椀ves

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

39

• Understanding of Concurrency Control.

• Parallel Programming Technique

• Distributed Programming Technique

Achieving Concurrency

Parallel programming and distributed programming are two basic approaches for achieving concurrency:

• Parallel programming techniques assign the work a program has do to two or more processors within

a single physical or a single virtual computer.

• Distributed programming techniques assign the work a program has to do to two or more processes

where the processes may or may not exist on the same computer.

Achieving Concurrency: Parallel Programming Technique

• The parallel applica琀椀on consists of one program divided into four tasks. Each task executes on a separate

processor; therefore, each task may execute simultaneously. The tasks can be implemented by either a

process or a thread.

Typical architecture for a parallel program.

Achieving Concurrency: Distributed Programming Technique

• The distributed applica琀椀on consists of three separate programs with each program execu琀椀ng on a separate

computer. Program 3 consists of two separate parts that execute on the same computer. Although task A and

D of Program 3 are on the same computer, they are distributed because they are implemented by two

separate processes.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

40

Typical architecture for a parallel and distributed program.

Concurrency Control: Models for Programming Concurrency

Objec琀椀ves

• Models of Programming Concurrency.

• Van Roy Approaches for Programming Concurrency.

Concurrency Control: Models for Programming Concurrency

Van Roy introduces four main approaches for programming concurrency:

• Sequen琀椀al Programming.

• Declara琀椀ve Concurrency.

• Message-passing Concurrency.

• Shared-state Concurrency.

Sequen琀椀al Programming

In this determinis琀椀c programming model, no concurrency is used at all. In its strongest form, there is a total order of

all opera琀椀ons of the program. Weaker forms s琀椀ll keep the determinis琀椀c behavior. However, they either make no

guarantees on the exact execu琀椀on order to the programmer a priori. Or they provide mechanisms for explicit

preemp琀椀on of the task currently ac琀椀ve, as co-rou琀椀nes do, for instance.

Declara琀椀ve Concurrency

Declara琀椀ve programming is a programming model that favors implicit control 昀氀ow of computa琀椀ons. Control 昀氀ow is

not described directly, it is rather a result of computa琀椀onal logic of the program. The declara琀椀ve concurrency model

extends the declara琀椀ve programming model by allowing mul琀椀ple 昀氀ows of execu琀椀ons. It adds implicit concurrency

that is based on a data-driven or a demand-driven approach. While this introduces some form of nondeterminism at

run琀椀me, the nondeterminism is generally not observable from the outside.

Message-passing Concurrency

This model is a programming style that allows concurrent ac琀椀vi琀椀es to communicate via messages. Generally, this is

the only allowed form of interac琀椀on between ac琀椀vi琀椀es which are otherwise completely isolated. Message passing

can be either synchronous or asynchronous resul琀椀ng in di昀昀erent mechanisms and pa琀琀erns for synchroniza琀椀on and

coordina琀椀on

Shared-state Concurrency

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

41

Shared-state concurrency is an extended programming model where mul琀椀ple ac琀椀vi琀椀es are allowed to access

contended resources and states. Sharing the exact same resources and states among di昀昀erent ac琀椀vi琀椀es requires

dedicated mechanisms for synchroniza琀椀on of access and coordina琀椀on between ac琀椀vi琀椀es. The general

nondeterminism and missing invariants of this model would otherwise directly cause problems regarding consistency

and state validity.

Memory Hierarchies

Objec琀椀ves

• Introduc琀椀on of Memory Hierarchy

• Characteris琀椀cs of Memory Hierarchy

Memory Hierarchies

“Memory Hierarchy, in Computer System Design, is an enhancement that helps in organizing the memory so that it

can minimize the access 琀椀me. The development of the Memory Hierarchy occurred on a behavior of a program

known as locality of references.”

We are concerned with 昀椀ve types of memory:

• Registers: are the fastest type of memory, which are located internal to a processor. These elements are

primarily used for temporary storage of operands, small par琀椀琀椀ons of memory, etc., and are assumed to be

one word (32 bits) in length in the MIPS architecture.

• Cache: is a very fast type of memory that can be external or internal to a given processor. Cache is used for

temporary storage of blocks of data obtained from main memory (read opera琀椀on) or created by the

processor and eventually wri琀琀en to main memory (write opera琀椀on).

• Main Memory: is modelled as a large, linear array of storage elements that is par琀椀琀椀oned into sta琀椀c and

dynamic storage. Main memory is used primarily for storage of data that a program produces during its

execu琀椀on, as well as for instruc琀椀on storage.

• Disk Storage: is much slower than main memory, but also has much higher capacity than the preceding three

types of memory.

• Archival Storage: is o昀渀ine storage such as a CD-ROM jukebox or (in former years) rooms 昀椀lled with racks

containing magne琀椀c tapes. This type of storage has a very long access 琀椀me, in comparison with disk storage,

and is also designed to be much less vola琀椀le than disk data.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

42

Characteris琀椀cs of Memory Hierarchy

Characteris琀椀cs of a Memory Hierarchy can be inferred from the previous 昀椀gure:

• Capacity: It refers to the total volume of data that a system’s memory can store. The capacity

increases moving from the top to the bo琀琀om in the Memory Hierarchy.

• Access Time: It refers to the 琀椀me interval present between the request for read/write and the data

availability. The access 琀椀me increases as we move from the top to the bo琀琀om in the Memory

Hierarchy.

Characteris琀椀cs of a Memory Hierarchy can be inferred from the previous 昀椀gure:

• Performance: When a computer system was designed earlier without the Memory Hierarchy Design,

the gap in speed increased between the given CPU registers and the Main Memory due to a large

di昀昀erence in the system’s access 琀椀me. It ul琀椀mately resulted in the system’s lower performance, and

thus, enhancement was required. Such a kind of enhancement was introduced in the form of

Memory Hierarchy Design, and because of this, the system’s performance increased. One of the

primary ways to increase the performance of a system is minimizing how much a memory hierarchy

has to be done to manipulate data.

• Cost per bit: The cost per bit increases as one moves from the bo琀琀om to the top in the Memory

Hierarchy, i.e. External Memory is cheaper than Internal Memory

Limita琀椀ons of Memory System Performance

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

43

Objec琀椀ves

• Understanding of Limita琀椀ons of Memory System Performance.

• Memory Latency Example.

Limita琀椀ons of Memory System Performance

• Memory system, and not processor speed, is o昀琀en the bo琀琀leneck for many applica琀椀ons.

• Memory system performance is largely captured by two parameters, latency and bandwidth.

• Latency: Is the 琀椀me from the issue of a memory request to the 琀椀me the data is available at the

processor.

• Bandwidth: Is the rate at which data can be pumped to the processor by the memory system.

• It is very important to understand the di昀昀erence between latency and bandwidth.

• Consider the example of a 昀椀re-hose. If the water comes out of the hose two seconds a昀琀er the hydrant is

turned on, the latency of the system is two seconds.

• Once the water starts 昀氀owing, if the hydrant delivers water at the rate of 5 gallons/second, the

bandwidth of the system is 5 gallons/second.

• If you want immediate response from the hydrant, it is important to reduce latency.

• If you want to 昀椀ght big 昀椀res, you want high bandwidth.

Memory Latency Example

Consider a processor opera琀椀ng at 1 GHz (1 ns clock) connected to a DRAM with a latency of 100 ns (no caches).

Assume that the processor has two mul琀椀ply-add units and is capable of execu琀椀ng four instruc琀椀ons in each cycle of 1

ns. The following observa琀椀ons follow:

• The peak processor ra琀椀ng is 4 GFLOPS.

• Since the memory latency is equal to 100 cycles and block size is one word, every 琀椀me a memory

request is made, the processor must wait 100 cycles before it can process the data.

Improving E昀昀ec琀椀ve Memory

Latency Using Caches

Objec琀椀ves

• E昀昀ect of Cache.

• E昀昀ect of Cache with Example

Improving E昀昀ec琀椀ve Memory Latency Using Caches

• Caches are small and fast memory elements between the processor and DRAM.

• This memory acts as a low-latency high-bandwidth storage.

• If a piece of data is repeatedly used, the e昀昀ec琀椀ve latency of this memory system can be reduced by the

cache.

• The frac琀椀on of data references sa琀椀s昀椀ed by the cache is called the cache hit ra琀椀o of the computa琀椀on on the

system.

• Cache hit ra琀椀o achieved by a code on a memory system o昀琀en determines its performance.

E昀昀ect of Cache

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

44

• Repeated references to the same data item correspond to temporal locality.

• In our example, we had O(n2) data accesses and O(n3) computa琀椀on. This asympto琀椀c di昀昀erence makes the

above example par琀椀cularly desirable for caches.

• Reduce network conges琀椀on and improve overall performance.

E昀昀ect of Cache Example

Con琀椀nue the previous example of memory latency, we introduce a cache of size 32 KB with a latency of 1 ns or one

cycle. We use this setup to mul琀椀ply two matrices A and B of dimensions 32 × 32(8KB or 1K words for each matrix).

We have carefully chosen these numbers so that the cache is large enough to store matrices A and B, as well as the

result matrix C.

• 1GHz processor, 4GFLOPS theore琀椀cal peak, 100ns memory Latency.

• Assume 1ns cache latency (full-speed cache)

The following observa琀椀ons can be made about the problem:

• Fetching the two matrices into the cache corresponds to fetching 2K words, which takes

approximately 200 µs.

• Mul琀椀plying two n × n matrices takes 2n3 opera琀椀ons. For our problem, this corresponds to 64K

opera琀椀ons, which can be performed in 16K cycles (or 16 µs) at four instruc琀椀ons per cycle.

• The total 琀椀me for the computa琀椀on is therefore approximately the sum of 琀椀me for load/store

opera琀椀ons and the 琀椀me for the computa琀椀on itself, i.e., 200 + 16 µs.

• This corresponds to a peak computa琀椀on rate of 64K/216 or 303 MFLOPS.

E昀昀ect of Memory Bandwidth

Objec琀椀ves

• E昀昀ect of Memory Bandwidth.

• E昀昀ect of Memory Bandwidth Example.

E昀昀ect of Memory Bandwidth

• Memory bandwidth is determined by the bandwidth of the memory bus as well as the memory units.

• Memory bandwidth can be improved by increasing the size of memory blocks.

• The performance of the CPU or GPU can also impact memory bandwidth.

E昀昀ect of Memory Bandwidth Example

Consider the same setup as in previous topic, except in this case, the block size is 4 words instead of 1 word. We

repeat the dot-product computa琀椀on in this scenario:

• Assuming that the vectors are laid out linearly in memory, eight FLOPs (four mul琀椀ply-adds) can be

performed in 200 cycles.

• This is because a single memory access fetches four consecu琀椀ve words in the vector.

• Therefore, two accesses can fetch four elements of each of the vectors. This corresponds to a FLOP

every 25 ns, for a peak speed of 40 MFLOPS.

• It is important to note that increasing block size does not change latency of the system.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

45

• Physically, the scenario illustrated here can be viewed as a wide data bus (4 words or 128 bits) connected to

mul琀椀ple memory banks.

• In prac琀椀ce, such wide buses are expensive to construct.

• In a more prac琀椀cal system, consecu琀椀ve words are sent on the memory bus on subsequent bus cycles a昀琀er

the 昀椀rst word is retrieved.

• The above examples clearly illustrate how increased bandwidth results in higher peak computa琀椀on rates

• The data layouts were assumed to be such that consecu琀椀ve data words in memory were used by successive

instruc琀椀ons (spa琀椀al locality of reference).

• If we take a data-layout centric view, computa琀椀ons must be reordered to enhance spa琀椀al locality of

reference.

Week 7

Interconnec琀椀on Networks

Objec琀椀ves

• Introduc琀椀on of Interconnec琀椀on Networks

• Introduc琀椀on of Sta琀椀c Network

• Introduc琀椀on of Dynamic Network

Interconnec琀椀on Networks:

“Interconnec琀椀on networks provide mechanisms for data transfer between processing nodes or between processors

and memory modules.”

Interconnects are made of switches and links.

Provide e昀케cient, correct, robust message passing between two separate nodes.

• Local area network (LAN) – connects nodes in single building, fast & reliable.

• Media: twisted-pair, coax, 昀椀ber

• Bandwidth: 10-100MB/s

• Wide area network (WAN) – connects nodes across large geographic area.

• Media: 昀椀ber, microwave links, satellite channels

• Bandwidth: 1.544MB/s (T1), 45 MB/s (T3)

Interconnec琀椀on networks are classi昀椀ed into two categories:

• Sta琀椀c network

• Dynamic network

Interconnec琀椀on Networks: Sta琀椀c Network

• Sta琀椀c networks consist of point-to-point communica琀椀on links among processing nodes and are also referred

to as direct networks.

• Direct 昀椀xed links are established among nodes to form a 昀椀xed network.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

46

Interconnec琀椀on Networks: Dynamic Network

• Dynamic networks are built using switches and communica琀椀on links. Dynamic networks are also referred to

as indirect networks.

• Connec琀椀ons are established when needed

• Communica琀椀on links are connected to one another dynamically by the switches to establish paths among

processing nodes and memory banks.

Classi昀椀ca琀椀on of interconnec琀椀on networks: (a) a sta琀椀c network; and (b) a dynamic network.

Control Strategy

• Objec琀椀ves Understanding of Control Strategies.

• Centralized Strategy.

• Decentralized Strategy

Control Strategy

• Depending on where the decisions are made as well as on the number of measurements that are u琀椀lized to

make the control decisions, these control strategies are classi昀椀ed into two categories:

• Centralized

• Decentralized

Control Strategy: Centralized

• One central control unit is used to control the opera琀椀ons of the components of the system

• Non autonomous components.

• Usually homogeneous technology

• Mul琀椀ple users share the same resources at all 琀椀me

• Single point of control

• Single point of failure

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

47

Control Strategy: Decentralized

• Set of 琀椀ghtly coupled programs execu琀椀ng on one or more computers which are interconnected through a

network and coordina琀椀ng their ac琀椀ons.

• The control func琀椀on is distributed among di昀昀erent components in the system.

• Autonomous components

• Mostly build using heterogeneous technology

• System components may be used exclusively

• Concurrent processes can execute

• Mul琀椀ple point of failure

Switching Techniques

Objec琀椀ves

• Understanding of Switching Techniques.

• Types of Switching Techniques

Switching Techniques

 “Switching is process to forward packets coming in from one port to a port leading towards the des琀椀na琀椀on.”

• Switches map a 昀椀xed number of inputs to outputs.

• The total number of ports on a switch is the degree of the switch.

• Switches may also provide support for internal bu昀昀ering, rou琀椀ng and mul琀椀cast

• The cost of a switch grows as the square of the degree of the switch, the peripheral hardware linearly as the

degree, and the packaging costs linearly as the number of pins.

• Nodes may connect to other nodes only, or to sta琀椀ons and other nodes.

• End devices are sta琀椀ons:

• Computer, terminal, phone, etc.

• Two di昀昀erent switching technologies are:

• Circuit switching

• Packet switching

Switching Techniques: Circuit switching

• A complete path has to be established prior to the start of communica琀椀on between a source and a

des琀椀na琀椀on.

• Dedicated communica琀椀on path between two sta琀椀ons.

• Must have switching capacity and channel capacity to establish connec琀椀on

• Must have intelligence to work out rou琀椀ng

• Three phases are:

• Establish

• Transfer

• Disconnect

Switching Techniques: Packet switching

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

48

• Communica琀椀on between a source and a des琀椀na琀椀on takes place via messages divided into smaller en琀椀琀椀es,

called packets.

• Data transmi琀琀ed in small packets.

• Typically, 1000 octets.

• Longer messages split into series of packets.

• Each packet contains a por琀椀on of user data plus some control informa琀椀on

• Control info

• Rou琀椀ng (addressing) informa琀椀on

• Packets are received, stored brie昀氀y (bu昀昀ered) and past on to the next node.

• Store and forward

Network Topologies

Objec琀椀ves

• Introduc琀椀on of Network Topologies

• Types of Network Topologies

Network Topologies:

“A network topology is the physical and logical arrangement of nodes and connec琀椀ons in a network. Describes how

to connect processors and memories to other processors and memories”

• A variety of network topologies have been proposed and implemented.

• These topologies tradeo昀昀 performance for cost

• Commercial machines o昀琀en implement hybrids of mul琀椀ple topologies for reasons of packaging, cost, and

available components

• Connec琀椀on of nodes impacts

• Maximum & average communica琀椀on 琀椀me

• Fault tolerance

• Expense

• Two basic types of topologies are:

• Sta琀椀c topology.

• Dynamic topology.

• Sta琀椀c Connec琀椀on Networks:

• Ring (Loop) networks

• Mesh

• Torus

• Tree networks

• Hypercube network

• Dynamic Connec琀椀on Networks

• Bus-based

• Switch-based

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

49

Network Proper琀椀es

• Diameter: The diameter of a network with n nodes is the length of the maximum shortest path between any

two nodes in the network.

• Degree of a node: The number of connec琀椀ons for that node.

• Latency: Total 琀椀me to send a message

• Bandwidth: Number of bits transmi琀琀ed in a unit of 琀椀me.

• Bisec琀椀on: The number of connec琀椀ons that need to be cut to par琀椀琀椀on the network in 2

Sta琀椀c Topologies: Star

Objec琀椀ves

• Introduc琀椀on Star Topology

• Proper琀椀es of Star Topology

Sta琀椀c Topologies: Star

“All devices are connected to a central switch, which makes it easy to add new nodes without reboo琀椀ng all currently

connected devices. Logical: master-slave model.”

• Every node is connected only to a common node at the center.

• Distance between any pair of nodes is O(1). However, the central node becomes a bo琀琀leneck.

• In this sense, star connected networks are sta琀椀c counterparts of buses.

Inexpensive – some琀椀mes used for LANs

A star connected network of nine nodes.

Sta琀椀c Topologies: Mesh

Objec琀椀ves

• Introduc琀椀on of Mesh Topology.

• Proper琀椀es of Mesh Topology.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

50

Sta琀椀c Topologies: Mesh

“Each node is connected to every other mode with a direct link. This topology creates a very reliable network but

requires a large amount of cable and is di昀케cult to administer.”

• Two-dimensional mesh is an extension of the linear array to two dimensions.

• In a linear array, each node has two neighbors, one to its le昀琀 and one to its right. If the nodes at either end

are connected, we refer to it as a 1-D torus or a ring.

• A 2-D mesh has the property that it can be laid out in 2-D space, making

• It a琀琀rac琀椀ve from a wiring standpoint.

Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh with wraparound link (2-D

torus); and (c) a 3-D mesh with no wraparound.

Sta琀椀c Topologies: Hypercube

Objec琀椀ves

• Introduc琀椀on of Hypercube Topology.

• Proper琀椀es of Hypercube Topology

Sta琀椀c Topologies: Hypercube

“Hypercube (or Binary n-cube mul琀椀processor) structure represents a loosely coupled system made up of N=2n

processors interconnected in an n-dimensional binary cube.”

• A special case of a d-dimensional mesh is a hypercube. Here, d = log p, where p is the total number of nodes.

• The distance between any two nodes is at most log p

• Each node has log p neighbors

• The distance between two nodes is given by the number of bit posi琀椀ons at which the two nodes di昀昀er

• Each node is assigned a binary address in such a manner, that the addresses of two neighbors di昀昀er in exactly

one bit posi琀椀on.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

51

Construc琀椀on of hypercubes from hypercubes of lower dimension.

Construc琀椀on of hypercubes from hypercubes of lower dimension

Sta琀椀c Topologies: Tree

Objec琀椀ves

• Introduc琀椀on of Tree Topology

• Types of Tree Topology.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

52

Sta琀椀c Topologies: Tree

“A tree network is one in which there is only one path between any pair of nodes.”

• The distance between any two nodes is no more than 2logp.

• Links higher up the tree poten琀椀ally carry more tra昀케c than those at the lower levels

• For this reason, a variant called a fat-tree, fa琀琀ens the links as we go up the tree

• Both linear arrays and star-connected networks are special cases of tree networks

• Trees can be laid out in 2D with no wire crossings. This is an a琀琀rac琀椀ve property of trees

• To route a message in a tree, the source node sends the message up the tree un琀椀l it reaches the node at the

root of the smallest subtree containing both the source and des琀椀na琀椀on nodes.

Complete binary tree networks: (a) a sta琀椀c tree network; and (b) a dynamic tree network.

Sta琀椀c Topologies: Fat Tree

A fat tree network of 16 processing nodes

Dynamic Topologies: Buses

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

53

Objec琀椀ves

• Introduc琀椀on of Bus Topology

• Introduc琀椀on of Distributed Memory.

Dynamic Topologies: Bus

“Bus topology, also known as line topology, is a type of network topology in which all devices in the network are

connected by one central network cable. The single cable, where all data is transmi琀琀ed between devices, is referred

to as the bus, backbone, or trunk.”

• Some of the simplest and earliest parallel machines used buses. All processors access a common bus for

exchanging data.

• A bus has the desirable property that the cost of the network scales linearly as the number of nodes, p. This

cost is typically associated with bus interfaces.

• The distance between any two nodes is O(1) in a bus. The bus also provides a convenient broadcast media.

However, the bandwidth of the shared bus is a major bo琀琀leneck.

• Typical bus based machines are limited to dozens of nodes. Sun Enterprise servers and Intel Pen琀椀um based

shared-bus mul琀椀processors are examples of such architectures.

 Bus-based interconnects with no local caches.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

54

 Bus-based interconnects with local memory/caches.

Dynamic Topologies: Bus Cont…

Objec琀椀ves

• Understanding of Single Bus System.

• Understanding of Mul琀椀-Bus System.

Dynamic Topologies: Bus

• Bus-based dynamic topologies are broadly classi昀椀ed into two categories:

• Sigle bus

• Mul琀椀 bus

Dynamic Topologies: Sigle BUS

• Simplest way to connect mul琀椀processor systems.

• The use of local caches reduces the processor memory tra昀케c.

• Size of such system varies between 2 and 50 processors.

• Single bus mul琀椀processors are inherently limited by:

• Bandwidth of bus.

• 1 processor can access the bus.

• 1 memory access can take place at any given 琀椀me.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

55

Dynamic Topologies: Mul琀椀 Bus

• Several parallel buses to interconnect mul琀椀ple processors and mul琀椀ple memory modules.

• Many connec琀椀on schemes are possible:

• Mul琀椀ple Bus with Full Bus – Memory Connec琀椀on (MBFBMC).

• Mul琀椀ple Bus with Single Bus – Memory Connec琀椀on (MBSBMC).

• Mul琀椀ple Bus with Par琀椀al Bus – Memory Connec琀椀on (MBPBMC).

• Mul琀椀ple Bus with Class-based Bus – Memory Connec琀椀on (MBCBMC).

Mul琀椀ple Bus with Full Bus – Memory Connec琀椀on (MBFBMC)

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

56

Mul琀椀ple Bus with Single Bus – Memory Connec琀椀on (MBSBMC)

Mul琀椀ple Bus with Par琀椀al Bus – Memory Connec琀椀on (MBPBMC)

Mul琀椀ple Bus with Class-based Bus – Memory Connec琀椀on (MBCBMC).

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

57

Dynamic Topologies: Switch Based Networks

Objec琀椀ves

• Understanding of Single-Staged Switch.

• Understanding of Mul琀椀-Staged Switch.

Switch-based Dynamic Topologies: Sigle-Stage Switch.

A single stage of SE exists between the inputs and outputs of the network. Possible se琀�ngs of a 2x2 SE are:

Switch-based Dynamic Topologies: Mul琀椀-Stage Switch

• Crossbars have excellent performance scalability but poor cost scalability.

• Buses have excellent cost scalability, but poor performance scalability.

• Mul琀椀stage interconnects strike a compromise between these extremes.

• A Mul琀椀stage switch network consists of a number of stages each consis琀椀ng of a set of 2x2 SEs.

• Stages are connected to each other using Inter-Stage Connec琀椀on (ISC) pa琀琀ern.

• In MINs the rou琀椀ng of a message from a given source to a given des琀椀na琀椀on is based on the des琀椀na琀椀on

address (self-rou琀椀ng).

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

58

The schema琀椀c of a typical mul琀椀stage interconnec琀椀on network

• One of the most commonly used mul琀椀stage interconnects is the Omega network.

• This network consists of log p stages, where p is the number of inputs/outputs.

• At each stage, input i is connected to output j

• if:

Each stage of the Omega network implements a perfect shu昀툀e as follows:

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

59

A perfect shu昀渀e interconnec琀椀on for eight inputs and outputs.

Dynamic Topologies: Cross Bar

Objec琀椀ves

• Understanding of Cross Bar Topology

• Architecture of Cross Bar Topology.

Dynamic Topologies: Cross Bar

• A simple way to connect p processors to b memory banks is to use a crossbar network.

• A crossbar network uses an p×m grid of switches to connect p inputs to m outputs in a non-blocking manner.

• The cost of a crossbar of p processors grows as O(p2).

• This is generally di昀케cult to scale for large values of p.

• Provide simultaneous connec琀椀ons among all its inputs and all its outputs.

• A Switching Element (SE) is at the intersec琀椀on of any 2 lines extended horizontally or ver琀椀cally inside the

switch.

• It is a non-blocking network allowing mul琀椀ple input output connec琀椀on pa琀琀ern to be achieved

simultaneously

• Examples of machines that employ crossbars include the Sun Ultra HPC 10000 and the Fujitsu VPP500

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

60

A completely non-blocking crossbar network connec琀椀ng p processors to b memory banks.

Analysis and Performance Metrics

Objec琀椀ves

• Evalua琀椀ng of Sta琀椀c Interconnec琀椀on Networks

• Evalua琀椀ng of Dynamic Interconnec琀椀on Networks

Evalua琀椀ng Interconnec琀椀on Networks

• Diameter: The distance between the farthest two nodes in the network. The diameter of a linear array is p −

1, that of a mesh is 2(− 1), that of a tree and hypercube is log p, and that of a completely connected

network is O(1).

• Bisec琀椀on Width: The minimum number of wires you must cut to divide the network into two equal parts.

The bisec琀椀on width of a linear array and tree is 1, that of a mesh is , that of a hypercube is p/2 and that of

a completely connected network is p2/4.

• Cost: The number of links or switches (whichever is asympto琀椀cally higher) is a meaningful measure of the

cost. However, a number of other factors, such as the ability to layout the network, the length of wires, etc.,

also factor into the cost

Analysis and Performance Metrics: Sta琀椀c Networks

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

61

Analysis and Performance Metrics: Dynamics Networks

Week 8

What is replica琀椀on of data?

Objec琀椀ves

• Concept of Replica琀椀on of Data

• Replica琀椀on as Scaling Technique

What is replica琀椀on of data?

“Data replica琀椀on is the process by which data residing on a physical/virtual servers or cloud instance is con琀椀nuously

replicated or copied to a secondary server(s) or cloud instance. Organiza琀椀ons replicate data to support high

availability, backup, or disaster recovery.”

Reasons for Replica琀椀on

• Data are replicated to increase the reliability of a system.

• Replica琀椀on for performance:

• Scaling in numbers.

• Scaling in geographical area.

• Replicas allows remote sites to con琀椀nue working in the event of local failures

• It is also possible to protect against data corrup琀椀on.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

62

• Replicas allow data to reside close to where it is used.

Replica琀椀on as Scaling Technique

Replica琀椀on and caching for performance are widely applied as scaling techniques

Replica琀椀ng the data and moving it closer to where it is needed helps to solve the scalability problem

When systems scale:

• The 昀椀rst problems to surface are those associated with performance as the systems get bigger, they

get o昀琀en slower.

• Another problem is how to e昀케ciently synchronize all of the replicas created to solve the scalability

issue?

Replica琀椀on and Consistency

Objec琀椀ves

• Understanding of Replica琀椀on and Consistency.

• Data Consistency Models

Replica琀椀on and Consistency

• Adding replicas improves scalability but provoke the overhead of keeping the replicas up-to-date. The

solu琀椀on o昀琀en results in a relaxa琀椀on of any consistency constraints.

• If there are many replicas of the same thing, it is not easy to keep all those replicas consistent. Two principal

keys are:

• How do we keep all of them up-to-date?

• How do we keep the replicas consistent?

Replica琀椀on and Consistency: Data Consistency Models

Consistency can be achieved in a number of ways. We will study a number of consistency models, as well as protocols

for implemen琀椀ng the models

The consistency models are classi昀椀ed into two broader categories

• Data-centric Consistency Models

• Client-Centric Consistency Models

Data Consistency Models

• Data-centric Consistency Models

• Con琀椀nuous Consistency

• Consistent Ordering of Opera琀椀ons

• Causal Consistency

• Grouping Opera琀椀ons

• Client-Centric Consistency Models

• Eventual Consistency

• Monotonic Writes

• Read Your Writes

• Writes Follow Reads

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

63

Data-Centric Consistency Models: Con琀椀nuous Consistency

Objec琀椀ves

• Understanding of Data-Centric Consistency Models.

• Understanding of Con琀椀nuous Consistency

• Understanding of Conit with example

Data Consistency Model

 “A contract between processes and the data store that says that if processes agree to obey certain rules, the store

promises to work correctly.”

Data-Centric Consistency Models

• A data-store can be read from or wri琀琀en to by any process in a distributed system.

• A local copy of the data-store (replica) can support “fast reads”.

• A write to a local replica needs to be propagated to all remote replicas.

The general organiza琀椀on of a logical data store, physically distributed and replicated across mul琀椀ple processes.

Data-Centric Consistency Models: Con琀椀nuous Consistency

Degree of consistency: Yu and Vahdat (2002) take a general approach by dis琀椀nguishing three independent axes for

de昀椀ning inconsistencies:

• Replicas may di昀昀er in their numerical value.

• Replicas may di昀昀er in their rela琀椀ve staleness.

• There may di昀昀erences with respect to order of performed update opera琀椀ons.

• A conit speci昀椀es the unit over which consistency is to be measured.

• Example: numerical and ordering devia琀椀ons.

contains the variables x and y:

• Each replica maintains a vector clock

• B sends A opera琀椀on [h5,Bi: x := x + 2];

• A has made this opera琀椀on permanent (cannot be rolled back)

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

64

• A has three pending opera琀椀ons; order devia琀椀on = 3

• A has missed one opera琀椀on from B, yielding a max di昀昀 of 5 units) (1,5)

An example of keeping track of consistency devia琀椀ons [adapted from (Yu and Vahdat, 2002)].

Data-Centric Consistency Models: Sequen琀椀al Consistency

Objec琀椀ves

• Introduc琀椀on of Sequen琀椀al Consistency.

• Example of Sequen琀椀al Consistency.

Data-Centric Consistency Models: Sequen琀椀al Consistency

 “The result of any execu琀椀on is the same as if the (read and write) opera琀椀ons by all processes on the data-store

were executed in the same sequen琀椀al order and the opera琀椀ons of each individual process appear in this sequence in

the order speci昀椀ed by its program.”

• A weaker consistency model, which represents a relaxa琀椀on of the rules.

• It is also must easier to implement.

• Example: Time independent process. Four processes opera琀椀ng on the same data item x.

• Process P1 昀椀rst performs W(x)a to x.

• Later (in absolute 琀椀me), process P2 performs a write opera琀椀on, by se琀�ng the value of x to b.

• Both P3 and P4 昀椀rst read value b, and later value a.

• Write opera琀椀on of process P2 appears to have taken place before that of P1.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

65

(a) A sequen琀椀ally consistent data store.

Example: Time independent process. Four processes opera琀椀ng on the same data item x.

• Violates sequen琀椀al consistency - not all processes see the same interleaving of write opera琀椀ons.

• To process P3, it appears as if the data item has 昀椀rst been changed to b, and later to a.

• But, P4 will conclude that the 昀椀nal value is b.

(b) A data store that is not sequen琀椀ally consistent

Data-Centric Consistency Models: Causal Consistency

Objec琀椀ves

• Introduc琀椀on of Casual Consistency.

• Example of Casual Consistency.

Data-Centric Consistency Models: Causal Consistency

For a data store to be considered causally consistent, it is necessary that the store obeys the following

condi琀椀on:

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

66

• Writes that are poten琀椀ally causally related must be seen by all processes in the same order.

• Concurrent writes may be seen in a di昀昀erent order on di昀昀erent machines

Causal Consistency Example

Interac琀椀on through a distributed shared database.

• Process P1 writes data item x.

• Then P2 reads x and writes y.

• Reading of x and wri琀椀ng of y are poten琀椀ally causally related because the computa琀椀on of y may have

depended on the value of x as read by P2 (i.e., the value wri琀琀en by P1).

• Conversely, if two processes spontaneously and simultaneously write two di昀昀erent data items, these are not

causally related.

• Opera琀椀ons that are not causally related are said to be concurrent.

• For a data store to be considered causally consistent, it is necessary that the store obeys the following

condi琀椀on:

• Writes that are poten琀椀ally causally related must be seen by all processes in the same order.

• Concurrent writes may be seen in a di昀昀erent order on di昀昀erent machines.

Example 1: This sequence is allowed with a causally-consistent store, but not with a sequen琀椀ally consistent store.

Example 2:

• W2(x)b poten琀椀ally depending on W1(x)a because b may result from a computa琀椀on involving the value read

by R2(x)a.

• The two writes are causally related, so all processes must see them in the same order.

• It is incorrect.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

67

(a) A viola琀椀on of a causally-consistent store.

Example 2:

• Read has been removed, so W1(x)a and W2(x)b are now concurrent writes.

• A causally-consistent store does not require concurrent writes to be globally ordered,

• It is correct.

Note: situa琀椀on that would not be acceptable for a sequen琀椀ally consistent store.

(a) A viola琀椀on of a causally-consistent store.

Client-Centric Consistency Models: Eventual Consistency

Objec琀椀ves

• Understanding of Client-Centric Consistency Models

• Understanding of Eventual Consistency.

Client-Centric Consistency Models

“A special class of distributed data-store which is characterized by the lack of simultaneous updates. Here, the

emphasis is more on maintaining a consistent view of things for the individual client process that is currently

opera琀椀ng on the data-store."

Client-centric consistency models are described using the following nota琀椀ons

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

68

• X: data item

• Xi: ith version of x

• WS xi[t] is the set of write opera琀椀ons at Li that lead to version xi of x (at 琀椀me t);

• If opera琀椀ons in WS xi[t1] have also been performed at local copy Lj at a later 琀椀me t2, we write WS

(xi[t1] , xj[t2]).

• If the ordering of opera琀椀ons or the 琀椀ming is clear from the context, the 琀椀me index will be omi琀琀ed.

Client-Centric Consistency Models: Eventual Consistency

“The eventual consistency model states that, when no updates occur for a long period of 琀椀me, eventually all updates

will propagate through the system and all the replicas will be consistent.”

• Client-centric consistency models originate from the work on Bayou

• Bayou is a database system developed for mobile compu琀椀ng, where it is assumed that network connec琀椀vity

is unreliable and subject to various performance problems.

• Wireless networks and networks that span large areas, such as the Internet, fall into this category.

• Eventual consistency essen琀椀ally requires only updates are guaranteed to propagate to all replicas.

Eventual Consistency Example

Example: Consistency for Mobile Users

• Consider a distributed database to which you have access through your notebook.

• Assume your notebook acts as a front end to the database.

• At loca琀椀on A you access the database doing reads and updates.

• At loca琀椀on B you con琀椀nue your work, but unless you access the same server as the one at loca琀椀on A,

you may detect inconsistencies:

• Your updates at A may not have yet been propagated to B

• You may be reading newer entries than the ones available at A

• Your updates at B may eventually con昀氀ict with those at A

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

69

The principle of a mobile user accessing di昀昀erent replicas of a distributed database.

Client-Centric Consistency Models: Monotonic Reads

Objec琀椀ves

• Understanding of Monotonic Reads.

• Monotonic Reads Example.

Client-Centric Consistency Models: Monotonic Reads

• If a process reads the value of a data item x, any successive read opera琀椀on on x by that process will always

return that same or a more recent value.

• Monotonic-read consistency guarantees that if a process has seen a value of x at 琀椀me t, it will never see an

older version of x at a later 琀椀me.

Monotonic Reads Example

Automa琀椀cally reading your personal calendar updates from di昀昀erent servers. Monotonic Reads guarantees

that the user sees all updates, no ma琀琀er from which server the automa琀椀c reading takes place.

Reading (not modifying) incoming mail while you are on the move. Each 琀椀me you connect to a di昀昀erent e-

mail server, that server fetches (at least) all the updates from the server you previously visited

• Example: The read opera琀椀ons performed by a single process P at two di昀昀erent local copies of the

same data store.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

70

• Ver琀椀cal axis - two di昀昀erent local copies of the data store are shown - L1 and L2.

• Time is shown along the horizontal axis.

• Opera琀椀ons carried out by a single process P in boldface are connected by a dashed line represen琀椀ng

the order in which they are carried out.

• Process P 昀椀rst performs a read opera琀椀on on x at L1, returning the value of x1 (at that 琀椀me).

• This value results from the write opera琀椀ons in WS (x1) performed at L1.

• Later, P performs a read opera琀椀on on x at L2, shown as R (x2).

• To guarantee monotonic-read consistency, all opera琀椀ons in WS (x1) should have been propagated to

L2 before the second read opera琀椀on takes place.

(a) A monotonic-read consistent data store.

• Situa琀椀on in which monotonic-read consistency is not guaranteed.

• A昀琀er process P has read x1 at L1, it later performs the opera琀椀on R (x2) at L2 .

• But, only the write opera琀椀ons in WS (x2) have been performed at L2 .

• No guarantees are given that this set also contains all opera琀椀ons contained in WS (x1).

(b) A data store that does not provide monotonic reads

Client-Centric Consistency Models: Monotonic Writes

Objec琀椀ves

• Understanding of Monotonic Writes

• Monotonic Writes Example.

Client-Centric Consistency Models: Monotonic Writes

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

71

• A write opera琀椀on by a process on a data item x is completed before any successive write opera琀椀on on X by

the same process.

• A write opera琀椀on on a copy of item x is performed only if that copy has been brought up to date by means of

any preceding write opera琀椀on, which may have taken place on other copies of x. If need be, the new write

must wait for old ones to 昀椀nish.

Monotonic Writes Example

• Upda琀椀ng

• Upda琀椀ng a program at server S2, and ensuring that all components on which compila琀椀on and linking

depends, are also placed at S2.

• Maintaining

• Maintaining versions of replicated 昀椀les in the correct order everywhere (propagate the previous

version to the server where the newest version is installed).

• Process P performs a write opera琀椀on on x at local copy L1, presented as the opera琀椀on W(x1).

• Later, P performs another write opera琀椀on on x, but this 琀椀me at L2, shown as W (x2).

• To ensure monotonic-write consistency, the previous write opera琀椀on at L1 must have been propagated to L2.

• This explains opera琀椀on W (x1) at L2, and why it takes place before W (x2).

(a) A monotonic-write consistent data store.

• Situa琀椀on in which monotonic-write consistency is not guaranteed.

• Missing is the propaga琀椀on of W(x1) to copy L2.

• No guarantees can be given that the copy of x on which the second write is being performed has the same or

more recent value at the 琀椀me W(x1) completed at L1.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

72

(b) A data store that does not provide monotonic-write consistency.

Client-Centric Consistency Models: Read Your Writes

Objec琀椀ves

• Understanding of Read Your Writes.

• Read Your Writes Example

"Client-Centric Consistency Models: Read Your Writes

• The e昀昀ect of a write opera琀椀on by a process on data item x will always be seen by a successive read opera琀椀on

on x by the same process.

• A write opera琀椀on is always completed before a successive read opera琀椀on by the same process, no ma琀琀er

where that read opera琀椀on takes place.

• Example: Upda琀椀ng your Web page and guaranteeing that your Web browser shows the newest version

instead of its cached copy.

Read Your Writes Example

• Process P performed a write opera琀椀on W(x1) and later a read opera琀椀on at a di昀昀erent local copy.

• Read-your-writes consistency guarantees that the e昀昀ects of the write opera琀椀on can be seen by the

succeeding read opera琀椀on.

• This is expressed by WS (x1;x2), which states that W (x1) is part of WS (x2).

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

73

(a) A data store that provides read-your-writes consistency.

• W (x1) has been le昀琀 out of WS (x2), meaning that the e昀昀ects of the previous write opera琀椀on by process P

have not been propagated to L2.

.

(b) A data store that does not.

Client-Centric Consistency Models: Writes Follow Reads

Objec琀椀ves

• Understanding Writes Follow Reads Model.

• Example of Writes Follow Reads Model.

Client-Centric Consistency Models: Writes Follow Reads

• A write opera琀椀on by a process on a data item x following a previous read opera琀椀on on x by the same process

is guaranteed to take place on the same or a more recent value of x that was read.

• Any successive write opera琀椀on by a process on a data item x will be performed on a copy of x that is up to

date with the value most recently read by that process

• Example: See reac琀椀ons to posted ar琀椀cles only if you have the original pos琀椀ng (a read .pulls in. the

corresponding write opera琀椀on).

Writes Follow Reads Example

• A process reads x at local copy L1.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

74

• The write opera琀椀ons that led to the value just read, also appear in the write set at L2, where the same

process later performs a write opera琀椀on.

• (Note that other processes at L2 see those write opera琀椀ons as well.)

(a) A writes-follow-reads consistent data store

• No guarantees are given that the opera琀椀on performed at L2,

• They are performed on a copy that is consistent with the one just read at L1.

(b) A data store that does not provide writes-follow-reads consistency.

Week 9

Introduc琀椀on to GPU

Objec琀椀ves

• Introduc琀椀on of GPU

• Applica琀椀ons of GPU

Introduc琀椀on to GPU

“Graphics Processing Unit (GPU) is a chip or electronic circuit capable of rendering graphics for display on an

electronic device. GPUs work by using a method called parallel processing, where mul琀椀ple processors handle

separate parts of the same task."

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

75

• The world’s 昀椀rst GPU, the GeForce 256, was marketed by NVIDIA in 1999. These GPU chips can process a

minimum of 10 million polygons per second and are used in nearly every computer on the market today.

• Tradi琀椀onal CPUs are structured with only a few cores. However, modern GPU chip can be built with hundreds

of processing cores. GPU parallelism is similar to mul琀椀core parallelism.

• GPUs have a throughput architecture that exploits massive parallelism by execu琀椀ng many concurrent threads

slowly, instead of execu琀椀ng a single long thread in a conven琀椀onal microprocessor very quickly.

• GPUs have evolved to the point where many real-world applica琀椀ons are easily implemented on them and run

signi昀椀cantly faster than on mul琀椀-core systems. Future compu琀椀ng architectures will be hybrid systems with

parallel-core GPUs working in tandem with mul琀椀-core CPUs

NVIDIA CUDA (Compute Uniform Device Architecture) – 2007

A way to run custom programs on the massively parallel architecture.

GPU vs. CPU

• GPU is designed for highly parallel opera琀椀ons while a CPU execute the programs serially.

• GPUs have many parallel execu琀椀ng units while CPUs has a few execu琀椀on units.

• GPUs have signi昀椀cantly faster and more advance memory interfaces as they need to shi昀琀 around a lot more

data than CPUs

• GPUs have much deeper pipelines several thousand stages vs 10 to 20 for CPUs

Applica琀椀ons of GPU

• Many applica琀椀ons have been developed to use GPUs for supercompu琀椀ng in various 昀椀elds:

• Scien琀椀昀椀c Compu琀椀ng

• CFD, Molecular Dynamics, Physical modeling, computa琀椀onal engineering, Genome

Sequencing, Mechanical Simula琀椀on, Quantum Electrodynamics, Game e昀昀ects (FX) physics.

• Image Processing

• Registra琀椀on, interpola琀椀on, feature detec琀椀on, recogni琀椀on, 昀椀ltering.

• Data Analysis

• Databases, matrix algebra, sor琀椀ng and searching, data mining.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

76

Architecture of GPU

Objec琀椀ve

• Understanding of Architecture of GPU.

• CUDA NVIDIA’s General Purpose Parallel Compu琀椀ng Architecture.

Architecture of GPU

• Parallel Coprocessor to conven琀椀onal CPUs

• Implement a SIMD structure, mul琀椀ple threads running the same code.

• Grid of Blocks of Threads

• Thread local registers

• Block local memory and control

• Global memory

• The CPU is the conven琀椀onal mul琀椀core processor with limited parallelism to exploit.

• The GPU has a many-core architecture that has hundreds of simple processing cores organized as

mul琀椀processors. Each core can have one or more threads.

• Essen琀椀ally, the CPU’s 昀氀oa琀椀ng-point kernel computa琀椀on role is largely o昀渀oaded to the many-core GPU. The

CPU instructs the GPU to perform massive data processing.

• Scale code to hundreds of cores running thousands of threads.

• The task runs on the GPU independently from the CPU.

The use of a GPU along with a CPU for massively parallel execu琀椀on in hundreds or thousands of processing cores.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

77

Conven琀椀onal Storage Hierarchy

Host + GPU Storage Hierarchy

• Blocks map to cores on the GPU.

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

78

• Allows for portability when changing hardware.

CUDA is NVIDIA’s general purpose parallel compu琀椀ng architecture .

• 8-series GPUs deliver 25 to 200+ GFLOPS on compiled parallel C applica琀椀ons

• Available in laptops, desktops, and clusters.

• GPU parallelism is doubling every year.

• Programming model scales transparently.

• Programmable in C with CUDA tools.

• Mul琀椀threaded SPMD model uses applica琀椀on data parallelism and thread parallelism.

GPU Programming Models

Objec琀椀ves

• Understanding of GPU Programming Models

• GPU Accelerated Libraries

GPU Programming Models

“GPU Programming is a method of running highly parallel general-purpose computa琀椀ons on GPU accelerators. While

the past GPUs were designed exclusively for computer graphics, today they are being used extensively for general-

purpose compu琀椀ng (GPGPU compu琀椀ng) as well.”

GPU Programming Models: CUDA

CUDA is NVIDIA’s general purpose parallel compu琀椀ng architecture .

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

79

• Designed for calcula琀椀on-intensive computa琀椀on on GPU hardware.

CUDA is not a language, it is an API

GPU Programming Models: CUDA

• General purpose programming model:

• User kicks o昀昀 batches of threads on the GPU.

• GPU = dedicated super-threaded, massively data parallel co-processor.

• CUDA compute device:

• Is a coprocessor to the CPU or host

• Has its own DRAM (device memory)

• Runs many threads in parallel

• Is typically a GPU but can also be another type of parallel processing device

GPU Programming Models: CUDA

Figure shows the architecture of the Fermi GPU, a next-genera琀椀on GPU from NVIDIA. This is a streaming

mul琀椀processor (SM) module. Mul琀椀ple SMs can be built on a single GPU chip. The Fermi chip has 16 SMs

implemented with 3 billion transistors. Each SM comprises up to 512 streaming processors (SPs), known as CUDA

cores. The Tesla GPUs used in the Tianhe-1a have a similar architecture, with 448 CUDA cores.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

80

NVIDIA Fermi GPU built with 16 streaming mul琀椀processors (SMs) of 32 CUDA cores each; only one SM Is shown.

GPU Accelerated Libraries

Power E昀케ciency of GPU

Objec琀椀ves

• Performance of GPU

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

81

• Power E昀케ciency of GPU

Performance of GPU

Bill Dally of Stanford University considers power and massive parallelism as the major bene昀椀ts of GPUs over CPUs for

the future. Two Aspects:

• Data Access Rate Capability

• Bandwidth

• Data Processing Capability

• How many ops per sec

Performance of GPU: Data Access Capability

• High-End CPU Today

• 31.92 GB/sec (nehalem) - 12.8 GB/sec (hapertown)

• Bus width 64-bit

• GPU / GTX280

• 141.7 GB/sec

• Bus width 512-bit

• 4.39x – 11x

• GFLOPS

• Billion Floa琀椀ng-Point Opera琀椀ons per Second

• Caveat: FOPs can be di昀昀erent

• But today things are not as bad as before

• High-End CPU today

• 3.4Ghz x 8 FOPS/cycle = 27 GFLOPS

• Assumes SSE

• High-End GPU today / GTX280

• 933.1 GFLOPS or 34x capability

Power E昀케ciency of GPU: GPU vs. CPU

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

82

Power E昀케ciency of GPU: GPU vs. CPU

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

83

The GPU performance (middle line, measured 5 G昀氀ops/W/core in 2011), compared with the lower CPU performance

(lower line measured 0.8 G昀氀ops/W/core in 2011) and the es琀椀mated 60 G昀氀ops/W/core performance in 2011 for the

Exascale (EF in upper curve) in the future.

What is Heterogeneity?

Objec琀椀ves

• De昀椀ni琀椀on of Heterogeneity.

• Heterogeneity and Mobile Code

What is Heterogeneity?

“Heterogeneity in distributed compu琀椀ng refers to the presence of diverse types of hardware, so昀琀ware, and

networking technologies in a distributed system. The Internet enables users to access services and run applica琀椀ons

over a heterogeneous collec琀椀on of computers and networks.”

Heterogeneity (mobile code and mobile agent)

• Networks

• Hardware

• Opera琀椀ng systems and middleware

• Program languages

It calls for integra琀椀on of components wri琀琀en using di昀昀erent programming languages, running on di昀昀erent opera琀椀ng

systems, execu琀椀ng on di昀昀erent hardware pla琀昀orms. In a distributed system, heterogeneity is almost unavoidable, as

di昀昀erent components may require di昀昀erent implementa琀椀on technologies.

Heterogeneity and Mobile Code

• The term mobile code is used to refer to program code that can be transferred from one computer to

another and run at the des琀椀na琀椀on -Java applets are example.

• Code suitable for running on one computer is not necessarily suitable for running on another because

executable programs are normally speci昀椀c both to the instruc琀椀on set and to the host opera琀椀ng system

• The virtual machine approach provides a way of making code executable on a variety of host computers

• Today, the most commonly used form of mobile code is the inclusion Javascript programs in some web pages

loaded into client browsers.

What is Code Migra琀椀on?

Objec琀椀ves

• Introduc琀椀on of Code Migra琀椀on.

• Dynamically Con昀椀guring a Client

What is Code Migra琀椀on?

“Code migra琀椀on in distributed compu琀椀ng refers to the process of transferring so昀琀ware code from one computer or

node in a network to another. This allows the code to be executed on the des琀椀na琀椀on computer, which may have

be琀琀er processing power, network connec琀椀vity, or other resources that are needed to perform a par琀椀cular task. ”

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

84

• Tradi琀椀onally, code migra琀椀on in distributed systems took place in the form of process migra琀椀on in which an

en琀椀re process was moved from one machine to another.

• Code migra琀椀on is a form of mobile code, which is a general term that refers to any code that can be

transferred from one system to another for execu琀椀on. Code migra琀椀on can be used in a variety of distributed

compu琀椀ng scenarios, such as distributed processing, load balancing, fault tolerance, and resource

op琀椀miza琀椀on.

Code Migra琀椀on: Mo琀椀va琀椀on

• Performance

• Move code on a faster machine.

• Move code closer to data.

• Flexibility

• Allow to dynamically con昀椀gure a distributed system.

Dynamically Con昀椀guring a Client

• The model of dynamically moving code from a remote site does require the protocol for downloading and

ini琀椀alizing code is standardized. Also, it is necessary that the downloaded code can be executed on the

client's machine. To allow remote clients to access the 昀椀le system, the server makes use of a proprietary

protocol

• The server provide the client's implementa琀椀on no sooner than is strictly necessary, that is, when the client

binds to the server. At that point, the client dynamically downloads the implementa琀椀on, goes through the

necessary ini琀椀aliza琀椀on steps, and subsequently invokes the server. This principle is shown in Figure.

Dynamically Con昀椀guring a Client

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

85

The principle of dynamically con昀椀guring a client to communicate to a server. The client 昀椀rst fetches the necessary

so昀琀ware, and then invokes the server.

Models for Code Migra琀椀on

Objec琀椀ves

• What are the Models for Code Migra琀椀on?

• Code Migra琀椀on and Local Resources.

Models for Code Migra琀椀on

• Process model for code migra琀椀on (Fuge琀琀a et al., 98)

• Code segment: set of instruc琀椀ons that make up the program

• Resource segment: references to external resources

• Execu琀椀on segment: store current execu琀椀on state

• Type of mobility

• Weak mobility: migrate only code segment

• Strong mobility: migrate execu琀椀on segment and resource segment

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

86

Migra琀椀on and Local Resources

• Types of process-to-resource binding

• Binding by iden琀椀昀椀er (e.g., URL, (IPaddr:Port))

• Binding by value (e.g., standard libraries)

• Binding by type (e.g., monitor, printer)

• Type of resources

• Una琀琀ached resources: can be easily moved (e.g., data 昀椀les)

• Fastened resources: can be used but at a high cost (e.g., local databases, web sites)

• Fixed resources: cannot be moved (e.g., local devices

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

87

Code Migra琀椀on in Heterogeneous Systems

Objec琀椀ves

• Code Migra琀椀on in Heterogenous System.

• Weak Mobility in D'Agents

• Strong Mobility in D'Agents.

Code Migra琀椀on in Heterogeneous Systems

• Maintain a migra琀椀on stack in an independent format

• Migrate only at certain points in the program (e.g., before/a昀琀er calling a procedure)

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

88

Weak Mobility in D'Agents

A Tel agent in D'Agents submi琀�ng a script to a remote machine (adapted from [Gray ‘95])

proc factorial n {

 if ($n 1) { return 1; } # fac(1) = 1

 expr $n * [factorial [expr $n – 1]] # fac(n) = n * fac(n – 1)

}

set number … # tells which factorial to compute

set machine … # iden琀椀fy the target machine

agent_submit $machine –procs factorial –vars number –script {factorial $number }

agent_receive … # receive the results (le昀琀 unspeci昀椀ed for simplicity)

Strong Mobility in D'Agents

A Tel agent in D'Agents migra琀椀ng to di昀昀erent machines where it executes the UNIX who command

(adapted from [Gray 95])

all_users $machines

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

89

proc all_users machines {

 set list "" # Create an ini琀椀ally empty list

 foreach m $machines { # Consider all hosts in the set of given machines

 agent_jump $m # Jump to each host

 set users [exec who] # Execute the who command

 append list $users # Append the results to the list

 }

 return $list # Return the complete list when done

}

set machines … # Ini琀椀alize the set of machines to jump to

set this_machine # Set to the host that starts the agent

Create a migra琀椀ng agent by submi琀�ng the script to this machine, from where

it will jump to all the others in $machines.

agent_submit $this_machine –procs all_users

 -vars machines

 -script { all_users $machines }

agent_receive … #receive the results (le昀琀 unspeci昀椀ed for simplicity)

Use of Virtual Machines to Handle the Heterogeneity

Objec琀椀ves

• Virtual Machines to Handle the Heterogeneity.

• Migra琀椀ng the En琀椀re Memory Image

• Migra琀椀ng Bindings to Local Resources

Use of Virtual Machines to Handle the Heterogeneity

“Virtual machines (VMs) can be a useful tool for handling heterogeneity in compu琀椀ng environments. VMs allow for

the crea琀椀on of mul琀椀ple virtualized instances of opera琀椀ng systems and applica琀椀ons, which can be run on a single

physical machine. This allows for the consolida琀椀on of mul琀椀ple compu琀椀ng environments onto a single machine,

reducing the need for mul琀椀ple physical machines with di昀昀erent con昀椀gura琀椀ons.”

Virtual machines (VMs) can be used to handle heterogeneity in distributed compu琀椀ng environments. In distributed

compu琀椀ng, di昀昀erent nodes in the network may have di昀昀erent hardware con昀椀gura琀椀ons, opera琀椀ng systems, and

so昀琀ware environments, which can make it challenging to develop and deploy applica琀椀ons that work consistently

across all nodes.

By using VMs, distributed compu琀椀ng systems can create virtualized instances of a consistent opera琀椀ng system and

applica琀椀on environment that can be deployed on any node in the network. This allows applica琀椀ons to be developed

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

90

and tested on a single virtualized environment and then deployed across mul琀椀ple nodes in the network, without

needing to worry about the heterogeneity of the underlying hardware and so昀琀ware con昀椀gura琀椀ons.

In addi琀椀on, VMs can be used to facilitate the migra琀椀on of applica琀椀ons across di昀昀erent nodes in the network. For

example, if a node fails or needs to be replaced, the VM can be easily migrated to a new node with minimal

disrup琀椀on to the applica琀椀on.

Let us consider one speci昀椀c example of migra琀椀ng virtual machines, as discussed in Clark et al. (2005). In this case, the

authors concentrated on real-琀椀me migra琀椀on of a virtualized opera琀椀ng system, typically something that would be

convenient in a cluster of servers where a 琀椀ght coupling is achieved through a single, shared local-area network.

Under these circumstances migra琀椀on involves two major problems:

• Migra琀椀ng the en琀椀re memory image.

• Migra琀椀ng bindings to local resources

Migra琀椀ng the En琀椀re Memory Image

There are, in principle, three ways to handle migra琀椀on:

• Pushing memory pages to the new machine and resending the ones that are later modi昀椀ed during the

migra琀椀on process.

• Stopping the current virtual machine; migrate memory and start the new virtual machine.

• Le琀�ng the new virtual machine pull in new pages as needed, that is, let processes start on the new virtual

machine immediately and copy memory pages on demand.

Migra琀椀ng Bindings to Local Resources

• Concerning local resources, ma琀琀ers are simpli昀椀ed when dealing only with a cluster server. First, because

there is a single network, the only thing that needs to be done is to announce the new network-to-MAC

address binding, so that clients can contact the migrated processes at the correct network interface.

• Finally, if it can be assumed that storage is provided as a separate 琀椀er, then migra琀椀ng binding to 昀椀les is

similarly simple. The overall e昀昀ect is that, instead of migra琀椀ng processes, we now actually see that an en琀椀re

opera琀椀ng system can be moved between machines.

Week 10

Introduc琀椀on To Message Passing

Objec琀椀ves

• Introduc琀椀on to Message Passing.

• Message Passing Model

Introduc琀椀on to Message Passing

Message passing is a method of communica琀椀on in distributed systems where processes or objects exchange

messages with each other to share informa琀椀on or coordinate ac琀椀vi琀椀es.”

Message Passing Model

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

91

• Message passing is the most commonly used parallel programming approach in distributed memory systems.

Here, the programmer has to determine the parallelism. In this model, all the processors have their own local

memory unit and they exchange data through a communica琀椀on network.

• There are two main types of message passing: synchronous and asynchronous.

Processors use message-passing libraries for communica琀椀on among themselves. Along with the data being sent,

the message contains the following components:

• The address of the processor from which the message is being sent.

• Star琀椀ng address of the memory loca琀椀on of the data in the sending processor.

• Data type of the sending data.

• Data size of the sending data.

• The address of the processor to which the message is being sent.

• Star琀椀ng address of the memory loca琀椀on for the data in the receiving processor.

The message passing model demonstrates the following characteris琀椀cs:

• A set of tasks that use their own local memory during computa琀椀on. Mul琀椀ple tasks can reside on the

same physical machine as well across an arbitrary number of machines.

• Tasks exchange data through communica琀椀ons by sending and receiving messages.

• Data transfer usually requires coopera琀椀ve opera琀椀ons to be performed by each process. For example,

a send opera琀椀on must have a matching receive opera琀椀on.

What is Message Passing Interface (MPI)?

Objec琀椀ves

• Understanding of Message Passing Interface (MPI).

• History and Versions of MPI.

Message Passing Interface

• A process is (tradi琀椀onally) a program counter and address space

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

92

• Processes may have mul琀椀ple threads (program counters and associated stacks) sharing a single address

space. MPI is for communica琀椀on among processes, which have separate address spaces.

• Inter-process communica琀椀on consists of:

• Synchroniza琀椀on

• Movement of data from one process’s address space to another’s.

Types of Parallel Compu琀椀ng Models:

• Data Parallel - the same instruc琀椀ons are carried out simultaneously on mul琀椀ple data items (SIMD)

• Task Parallel - di昀昀erent instruc琀椀ons on di昀昀erent data (MIMD)

• SPMD (single program, mul琀椀ple data) not synchronized at individual opera琀椀on level

• SPMD is equivalent to MIMD since each MIMD program can be made SPMD (similarly for SIMD, but

not in prac琀椀cal sense.)

Message passing (and MPI) is for MIMD/SPMD parallelism. HPF is an example of the SIMD interface

• Standardized message passing library speci昀椀ca琀椀on (IEEE):

• For parallel computers, clusters and heterogeneous networks.

• Not a speci昀椀c product, compiler speci昀椀ca琀椀on etc.

• Many implementa琀椀ons, MPICH, LAM, OpenMPI …

• Portable, with Fortran and C/C++ interfaces.

• Many func琀椀ons.

• Real parallel programming.

• Notoriously di昀케cult to debug.

History and Versions of MPI

• From a programming perspec琀椀ve, message passing implementa琀椀ons commonly comprise a library of

subrou琀椀nes that are imbedded in source code. The programmer is responsible for determining all

parallelism.

• Historically, a variety of message passing libraries have been available since the 1980s. These

implementa琀椀ons di昀昀ered substan琀椀ally from each other making it di昀케cult for programmers to develop

portable applica琀椀ons.

• In 1992, the MPI Forum was formed with the primary goal of establishing a standard interface for message

passing implementa琀椀ons.

• Part 1 of the Message Passing Interface (MPI) was released in 1994. Part 2 (MPI-2) was released in 1996.

Both MPI speci昀椀ca琀椀ons are available on the web at www.mcs.anl.gov/Projects/mpi/standard.html.

MPI is now the "de facto" industry standard for message passing, replacing virtually all other message passing

implementa琀椀ons used for produc琀椀on work. Most, if not all of the popular parallel compu琀椀ng pla琀昀orms o昀昀er at

least one implementa琀椀on of MPI. A few o昀昀er a full implementa琀椀on of MPI-2.

For shared memory architectures, MPI implementa琀椀ons usually don't use a network for task communica琀椀ons.

Instead, they use shared memory (memory copies) for performance reasons.

Library Interface

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

93

Objec琀椀ves

• Library Message-Passing

• MPI Basics Program

Library Interface

MPI is a speci昀椀ca琀椀on for the developers and users of message passing libraries. By itself, it is NOT a library - but

rather the speci昀椀ca琀椀on of what such a library should be.

A message-passing library speci昀椀ca琀椀ons

• Extended message-passing model.

• Not a language or compiler speci昀椀ca琀椀on.

• Not a speci昀椀c implementa琀椀on or product.

• MPI provides a powerful, e昀케cient, and portable way to express parallel programs.

• MPI was explicitly designed to enable libraries which may eliminate the need for many users to learn (much

of) MPI.

• Portable.

• Good way to learn about subtle issues in parallel compu琀椀ng.

MPI provides point-to-point communica琀椀on.

Collec琀椀ve opera琀椀ons

• Barrier synchroniza琀椀on

• Gather/sca琀琀er opera琀椀ons

• Broadcast, reduc琀椀ons

Prede昀椀ned and derived datatypes

Virtual topologies

C/C++ and Fortran bindings.

How big is the MPI library?

• Huge (125 Func琀椀ons).

• Basic (6 Func琀椀ons).

Where to get MPI library?

• Standard message-passing library includes best of several previous libraries.

• MPICH (WINDOWS / UNICES)

• h琀琀p://www-unix.mcs.anl.gov/mpi/mpich/

• Open MPI (UNICES)

• h琀琀p://www.open-mpi.org/

MPI Basics

Many parallel programs can be wri琀琀en using just these six func琀椀ons, only two of which are non-trivial;

– MPI_INIT

– MPI_FINALIZE

– MPI_COMM_SIZE

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

94

– MPI_COMM_RANK

– MPI_SEND

– MPI_RECV

Skeleton MPI Program

MPI Program Example

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argv[])

{

 MPI_Init(&argc, &argv);

 prin琀昀(“Hello, world!\n”);

 MPI_Finalize();

 return 0;

}

Message Passing Programming Modes

Objec琀椀ves

• What is Message Passing Programming?

• Message Passing Programming Modes.

Message Passing Programming

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

95

• Distributed memory processes have access only to local data. The sender process

issues a send call, and the receiver process issues a matching receive call.

• The logical view of a machine suppor琀椀ng the message-passing paradigm consists of p

processes, each with its own exclusive address space.

• Each data element must belong to one of the par琀椀琀椀ons of the space; hence, data

must be explicitly par琀椀琀椀oned and placed.

• All interac琀椀ons (read-only or read/write) require coopera琀椀on of two processes – the

process that has the data and the process that wants to access the data

• These two constraints, while onerous, make underlying costs very explicit to the

programmer.

Message Passing Programming Modes

• Di昀昀erent communica琀椀on modes that can be used for message passing programming

are:

• Synchronous/asynchronous

• Blocking/non-blocking

• Bu昀昀ered/unbu昀昀ered

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

96

Non-blocking: A rou琀椀ne is non-blocking if it is guaranteed to complete regardless of

external events (e.g., the other processors). Example: A send is non-blocking if it is

guaranteed to return whether or not there is a matching receive.

Blocking: A rou琀椀ne is blocking if its comple琀椀on (return of control to the calling

rou琀椀ne) may depend on an external event (an event that is outside the control of the

rou琀椀ne itself). Example: A send is blocking if it does not return un琀椀l there is a

matching receive.

• Asynchronous: A rou琀椀ne is asynchronous if it ini琀椀ates an opera琀椀on that happens

logically outside the 昀氀ow of control of the calling process. The important prac琀椀cal

dis琀椀nc琀椀on is whether the program may be required to check for comple琀椀on of the

opera琀椀on before proceeding.

• Synchronous: A rou琀椀ne is synchronous if its opera琀椀on happens within the 昀氀ow of

control of the calling process.

• Bu昀昀ered: A rou琀椀ne that uses bu昀昀ered message passing is a program that sends and

receives messages using a bu昀昀er. In this mode, messages are queued in the bu昀昀er

un琀椀l they are ready to be sent or received

• Unbu昀昀ered: A rou琀椀ne may be used to perform a speci昀椀c message-passing task, such

as sending or receiving a message between two processes. Does not use a bu昀昀er.

Messages are sent and received immediately without any bu昀昀ering. This mode is

useful when low latency is required.

Asynchronous/Synchronous Message Passing

Objec琀椀ves

• Understanding of Synchronous Message Passing.

• Understanding of Asynchronous Message Passing.

Asynchronous/Synchronous Message Passing

• Message-passing programs are o昀琀en wri琀琀en using the asynchronous or loosely

synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks execute asynchronously.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

97

• In the loosely synchronous model, tasks or subsets of tasks synchronize to

perform interac琀椀ons. Between these interac琀椀ons, tasks execute completely

asynchronously.

Synchronous Message Passing

• A synchronous communica琀椀on is not complete un琀椀l the message has been received.

• Completes once ack is received by sender.

• Communica琀椀on upon synchroniza琀椀on

• Hoare’s Communica琀椀ng Sequen琀椀al Processes (1978).

• BLOCKING send and receive opera琀椀ons.

• Unbu昀昀ered communica琀椀on.

• Several steps in protocol- synchroniza琀椀on, data movement, comple琀椀on.

• Delays par琀椀cipa琀椀ng processes.

Synchronous Message Passing

Asynchronous Message Passing

• Asynchronous Communica琀椀on: An asynchronous communica琀椀on completes before

the message is received. It has three modes:

• Standard send: completes once the message has been sent, which may or may not

imply that the message has arrived at its des琀椀na琀椀on.

• Bu昀昀ered send: completes immediately, if receiver not ready, MPI bu昀昀ers the message

locally.

• Ready send: completes immediately, if the receiver is ready for the message it will get

it, otherwise the message is dropped silently.

Asynchronous Message Passing

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

98

• Bu昀昀ered communica琀椀on

• May increase concurrency (e.g. producer/consumer).

• May increase transit 琀椀me.

• Send opera琀椀on

• Send opera琀椀on completes when message is completely copied to bu昀昀er.

• Generally non-blocking but will block if bu昀昀er is full

• Receive opera琀椀on – two 昀氀avors

• BLOCKING

• Receive opera琀椀on completes when message has been delivered.

• NON-BLOCKING

• Receive opera琀椀on provides loca琀椀on for message.

• No琀椀昀椀ed when receive complete (via 昀氀ag or interrupt).

Asynchronous Message Passing

Bene昀椀ts of the Message Passing Interface

Objec琀椀ves

• Understanding of Bene昀椀ts of MPI.

Bene昀椀ts of the Message Passing Interface

• Standardiza琀椀on - MPI is the only message passing library which can be considered a

standard. It is supported on virtually all HPC pla琀昀orms. Prac琀椀cally, it has replaced all

previous message passing libraries.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

99

• Portability - There is no need to modify your source code when you port your

applica琀椀on to a di昀昀erent pla琀昀orm that supports (and is compliant with) the MPI

standard

• Performance Opportuni琀椀es - Vendor implementa琀椀ons should be able to exploit

na琀椀ve hardware features to op琀椀mize performance.

• Func琀椀onality - Over 115 rou琀椀nes are de昀椀ned in MPI-1 alone.

• Scalability- MPI is designed to scale to large numbers of processors, which makes it

well-suited for high-performance compu琀椀ng.

• Availability - A variety of implementa琀椀ons are available, both vendor and public

domain.

Week 11

What is Thread?

Objec琀椀ves

• Introduc琀椀on of Threading

• Crea琀椀ng and Termina琀椀ng Threads using POSIX API

What is Thread?

• In general

• “A long, thin strand of co琀琀on, 昀椀bers etc.,”

• In Compu琀椀ng

• “A sequence of linked instruc琀椀ons”

• movl $14, %eax

 movl $10, %ebx

 add %eax, %ebx

Threads in context of CPU U琀椀liza琀椀on:

“A thread is a basic unit of CPU u琀椀liza琀椀on having…”

• Thread ID

• CPU Context

• Stack

• Priority

• Errno.

Threads in context of process

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

100

• A thread is a piece of code within the process

• Executes within the address space of a process

• Lightweight process

• Can be scheduled to run on a CPU as an independent unit and terminate

• Mul琀椀ple threads can run simultaneously .

Single thread vs Mul琀椀ple threads

Threads Example

Word Processor

Background thread may check spelling and grammar

Another thread does periodic automa琀椀c backups of the 昀椀le being edited

A third thread loads images from the hard drive, and

Foreground thread processes user input (keystrokes

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

101

Thread Model?

Objec琀椀ves

• Introduc琀椀on of Thread Model..

• Logical Machine Model of Threads

Thread Models

• Many to Many

• One to One

• Many to One

What is Thread?

• Thread Example

What is Thread?

All memory in the logical machine model of a thread is globally accessible to every thread

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

102

Logical Machine Model of Threads

Threads are invoked as func琀椀on calls

Thread API?

Objec琀椀ves

• What Is Thread API?

• Thread Crea琀椀on

The POSIX Thread API

A number of vendors provide vendor-speci昀椀c thread APIs (NT threads, Solaris threads, Java threads, etc.)

The IEEE speci昀椀es a standard 1003.1c-1995, POSIX API, also referred to as Pthreads

POSIX has emerged as the standard threads API, supported by most vendors.

Thread Termina琀椀on

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

103

Thread Crea琀椀on

Why Thread?

Objec琀椀ves

• Why Threads?

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

104

• Characteris琀椀cs of Threads

Why Thread?

Portability:

The possibility to use the same so昀琀ware in di昀昀erent environments

Latency hiding

Mul琀椀threading enables latency reduc琀椀on/hiding

Window XP

Window 7

Window 10

PC Game

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

105

Ease of Programming

Threaded programs are signi昀椀cantly easier to write than corresponding programs using

message passing APIs.

Widespread Use

The widespread acceptance of the POSIX thread API, development tools for POSIX threads

are more widely available and stable.

Thread Synchroniza琀椀on

Objec琀椀ves

• Introduc琀椀on of Thread Synchroniza琀椀on

• Logical Machine Model of Threads.

What is the biggest challenge with using thread?

Communica琀椀on is implicit in shared-address-space programming.

Much of the e昀昀ort associated with wri琀椀ng correct threaded programs is spent on

synchronizing concurrent threads with respect to their data accesses or scheduling.
Synchroniza琀椀on

What will happen when mul琀椀ple threads a琀琀empt to manipulate the same data item, if proper care is not taken to

synchronize?

Can results incoherent

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

106

Synchroniza琀椀on Primi琀椀ves of threads

Consider:

if (my_cost < best_cost)

best_cost = my_cost;

best_cost = 100

t1 = 50

t2 = 75

A昀琀er 琀椀me interval T, the best_cost =?

Mutual Exclusion

The code in the previous example corresponds to a cri琀椀cal segment; i.e.,

“A segment that must be executed by only one thread at any 琀椀me”.

• Cri琀椀cal segments in Pthreads are implemented using mutex locks

Mutex-locks have two states:.

• locked and

• Unlocked

At any point of 琀椀me, only one thread can lock a mutex lock.

Synchroniza琀椀on Primi琀椀ves of threads

• A lock is an atomic opera琀椀on

• A thread entering a cri琀椀cal segment 昀椀rst tries to get a lock

• It goes ahead when the lock is granted

Mutex Locks

Objec琀椀ves

• What are Mutex Locks?

• Uses and types of mutex

Mutual Exclusion

The Pthreads API func琀椀ons for handling mutex-locks:

• int pthread_mutex_lock (pthread_mutex_t *mutex_lock);

• int pthread_mutex_unlock (pthread_mutex_t *mutex_lock);

• int pthread_mutex_init (pthread_mutex_t *mutex_lock, const pthread_mutexa琀琀r_t

*lock_a琀琀r);

Producer-Consumer Using Mutex Locks

The producer-consumer scenario imposes the following constraints:

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

107

The producer thread must not overwrite the shared bu昀昀er when the previous task has not been picked up by a

consumer thread

The consumer threads must not pick up tasks un琀椀l there is something present in the shared data structure

Individual consumer threads should pick up tasks one at a 琀椀me.

Types of mutex

• A normal mutex

• A recursive mutex

• Error check mutex

Condi琀椀onal Variable

Objec琀椀ves

• Problems with mutex

• Introduc琀椀on to condi琀椀onal Variable

Locking Overhead

• Performance issue

• Serializa琀椀on issue

Locking overhead: Idling overheads

• It is o昀琀en possible to reduce the idling overhead associated with locks using an alternate func琀椀on,

pthread_mutex_trylock

• Int pthread_mutex_trylock (pthread_mutex_t *mutex_lock);

• pthread_mutex_trylock is typically much faster than pthread_mutex_lock on typical systems

Condi琀椀onal Variable in Synchroniza琀椀on

Problem with trylock:

trylock introduces the overhead of polling for availability of locks.

Solu琀椀on:

 Condi琀椀on Variable

What is condi琀椀onal variable?

“A condi琀椀on variable is a data object used for synchronizing threads. This variable allows a thread to block itself un琀椀l

speci昀椀ed data reaches a prede昀椀ned state”,

Condi琀椀onal Variable in Synchroniza琀椀on

A condi琀椀on variable is associated with a predicate.

• When the predicate becomes true, the condi琀椀on variable is used to signal one or more threads

wai琀椀ng on the condi琀椀on

A single condi琀椀on variable may be associated with more than one predicate

A condi琀椀on variable always has a mutex associated with it.

A thread locks this mutex and tests the predicate de昀椀ned on the shared variable.

If the predicate is not true, the thread waits on the condi琀椀on variable associated with the predicate using the

func琀椀on:

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

108

 pthread_cond_wait.

Pthreads func琀椀ons for condi琀椀on variables

• int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

• int pthread_cond_signal(pthread_cond_t *cond);

• int pthread_cond_init(pthread_cond_t *cond, const pthread_conda琀琀r_t *a琀琀r);

• int pthread_cond_destroy(pthread_cond_t *cond);

• int pthread_cond_broadcast(pthread_cond_t *cond);

Week 12

Principles of Parallel Algorithm Design

Objec琀椀ves

• Introduc琀椀on to Parallel Algorithms.

• Key steps and units in the design of parallel algorithms

Parallel Algorithms

Algorithm: “A prescribed set of well-de昀椀ned rules or processes for the solu琀椀on of a problem in a 昀椀nite number of

steps”

Algorithms in which several opera琀椀ons may be executed simultaneously are referred to as parallel algorithms. In

general, a parallel algorithm can be de昀椀ned as a set of processes or tasks that may be executed simultaneously and

may communicate with each other in order to solve a given problem.

What are the key steps in design of Parallel Algorithms?

• Assigning them to di昀昀erent processors for parallel execu琀椀on

• Dividing a computa琀椀on into smaller computa琀椀ons

What is decomposi琀椀on?

“The process of dividing a computa琀椀on into smaller parts, some or all of which may poten琀椀ally be executed in

parallel, is called decomposi琀椀on.”

What are task?

“Tasks are programmer-de昀椀ned units of computa琀椀on into which the main computa琀椀on is subdivided by means of

decomposi琀椀on.”

Types of tasks in term of interdependency?

• Dependent tasks

• Independent tasks

Example decomposi琀椀on: Dense matrix-vector Mul琀椀plica琀椀on

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

109

Task dependency graph

Objec琀椀ves

• Introduc琀椀on task dependency graph.

• Examples of task dependency graph

What is a task dependency graph?

• Decomposi琀椀on can be illustrated in the form of a directed graph with:

• Nodes corresponding to tasks and

• Edges indica琀椀ng that the result of one task is required for processing the next.

• Such a graph is called a task dependency graph.

Example of task dependency graph?

What is cri琀椀cal path length?

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

110

• A directed path in the task dependency graph represents a sequence of tasks that must be processed one

a昀琀er the other

• The longest such path determines the shortest 琀椀me in which the program can be executed in parallel.

• The length of the longest path in a task dependency graph is called the cri琀椀cal path length.

Example TDG: Database Query Processing:

Consider the execu琀椀on of the query:

“MODEL = ``CIVIC'' AND YEAR = 2001 AND (COLOR = ``GREEN'' OR COLOR = ``WHITE)”

on the given database:

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18,000

3476 Corolla 1999 White IL $15,000

7623 Camry 2001 Green NY $21,000

9834 Prius 2001 Green CA $18,000

6734 Civic 2001 White OR $17,000

5342 Al琀椀ma 2001 Green FL $19,000

3845 Maxima 2001 Blue NY $22,000

8354 Accord 2000 Green VT $18,000

4395 Civic 2001 Red CA $17,000

7352 Civic 2002 Red WA $18,000

Example: Database Query Processing

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

111

Granularity of Task Decomposi琀椀ons

Objec琀椀ves

• Introduc琀椀on granularity of task decomposi琀椀on.

• Examples of granularity of task decomposi琀椀on

Granularity of Task Decomposi琀椀ons (Task size)

Fined-grained

• Decomposi琀椀on of computa琀椀on into a large number of tasks results in 昀椀ne-grained decomposi琀椀on.

Coarse Grained

• Decomposi琀椀on of computa琀椀on into a small number of tasks results in a coarse grained decomposi琀椀on

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

112

Granularity of Task Decomposi琀椀ons (Concurrency)

• The number of tasks that can be executed in parallel is the degree of concurrency of a decomposi琀椀on

• The maximum degree of concurrency is the maximum number of such tasks at any point or 琀椀me during

execu琀椀on.

• The average degree of concurrency is the average number of tasks that can be processed in parallel over the

execu琀椀on of the program

Is there any limit on parallel performance?

• Do you think that 昀椀ner decomposi琀椀on of tasks always results in small 琀椀me

• There is an inherent bound on how 昀椀ne the granularity of a computa琀椀on can be

• Concurrent tasks may also have to exchange data with other tasks.

• This results in communica琀椀on overhead.

Decomposi琀椀on Techniques

Objec琀椀ves

• Classi昀椀ca琀椀on of decomposi琀椀on techniques.

• When to use what?

• What is recursive decomposi琀椀on technique?

What are the decomposi琀椀on techniques?

“There is no single recipe that works for all problems, we present a set of commonly used techniques that apply to

broad classes of

problems.”

Decomposi琀椀on Techniques

• Recursive Decomposi琀椀on

• Data Decomposi琀椀on

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

113

• Exploratory Decomposi琀椀on

• Specula琀椀ve Decomposi琀椀on

Recursive Decomposi琀椀on

• Generally suited to problems that are solved using the divide-and-conquer strategy.

• A given problem is 昀椀rst decomposed into a set of sub-problems.

• These sub-problems are recursively decomposed further un琀椀l a desired granularity is reached.

• A classic example of a divide-and-conquer algorithm on which we can apply recursive decomposi琀椀on is

Quicksort.

Recursive Decomposi琀椀on Example:Quicksort

Recursive Decomposi琀椀on Example: Finding Minimum Number

1. procedure RECURSIVE_MIN (A, n)

2. begin

3. if (n = 1) then

4. min := A [0] ;

5. else

6. lmin := RECURSIVE_MIN (A, n/2);

7. rmin := RECURSIVE_MIN (&(A[n/2]), n - n/2);

8. if (lmin < rmin) then

9. min := lmin;

10. else

11. min := rmin;

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

114

12. endelse;

13. endelse;

14. return min;

15. end RECURSIVE_MIN

Recursive Decomposi琀椀on Example: Finding Minimum Number

Data Decomposi琀椀on Technique

Objec琀椀ves

• What is data decomposi琀椀on technique

• What are di昀昀erent types of data decomposi琀椀on?

What is the Data Decomposi琀椀on Technique?

“Data decomposi琀椀on is a powerful and commonly used method for deriving concurrency in algorithms that operate

on large data structures. In this method, the decomposi琀椀on of computa琀椀ons is done in two steps.”

Data Decomposi琀椀on Steps?

• In step2, this data par琀椀琀椀oning is used to induce a par琀椀琀椀oning of the computa琀椀ons into tasks

• In step1, the data on which the computa琀椀ons are performed is par琀椀琀椀oned.

How to Decompose Data?

• Iden琀椀fy the data on which computa琀椀ons are performed.

• Par琀椀琀椀on this data across various tasks.

• This par琀椀琀椀oning induces a decomposi琀椀on of the problem.

• Data can be par琀椀琀椀oned in various ways - this cri琀椀cally impacts performance of a parallel algorithm.

Decomposi琀椀on based on Data Output

• O昀琀en, each element of the output can be computed independently of others (but simply as a func琀椀on of the

input).

• A par琀椀琀椀on of the output across tasks decomposes the problem naturally.

Example Set: {4,9,1,7,8,11,2,12}

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

115

Output Data Decomposi琀椀on: Example :

“Consider the problem of mul琀椀plying two n x n matrices A and B to yield matrix C. The output matrix C can be

par琀椀琀椀oned into four tasks ”

Decomposi琀椀on based on Input Data

• The Generally applicable if each output can be naturally computed as a func琀椀on of the input

• In many cases, this is the only natural decomposi琀椀on because the output is not clearly known a-priori (e.g.,

the problem of 昀椀nding the minimum in a list, sor琀椀ng a given list, etc.).

• A task is associated with each input data par琀椀琀椀on. The task performs as much of the computa琀椀on with its

part of the data. Subsequent processing combines these par琀椀al results.

 Transactions (input), itemsets (input), and frequencies (output)

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

116

Input Data Par琀椀琀椀oning: Example

Input and Output Data Par琀椀琀椀oning: Example

 Partitioning both transactions and frequencies among the
tasks

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

117

Decomposi琀椀on based on Intermediate Data

• Computa琀椀on can o昀琀en be viewed as a sequence of transforma琀椀on from the input to the output data.

• In these cases, it is o昀琀en bene昀椀cial to use one of the intermediate stages as a basis for decomposi琀椀on.

The Owner Computes Rule

• The Owner Computes Rule generally states that the process assigned a par琀椀cular data item is responsible for

all computa琀椀on associated with it.

• In the case of input data decomposi琀椀on, the owner computes rule implies that all computa琀椀ons that use the

input data are performed by the process.

• In the case of output data decomposi琀椀on, the owner computes rule implies that the output is computed by

the process to which the output data is assigned.

Exploratory and Specula琀椀ve Decomposi琀椀on Techniques

Objec琀椀ves

• What is exploratory decomposi琀椀on technique

• What is specula琀椀ve decomposi琀椀on?

Exploratory Decomposi琀椀on

“Exploratory decomposi琀椀on is used to decompose problems whose underlying computa琀椀ons correspond to a search

of a space for solu琀椀ons.”

Exploratory Decomposi琀椀on

• In many cases, the decomposi琀椀on of the problem goes hand-in-hand with its execu琀椀on.

• These problems typically involve the explora琀椀on (search) of a state space of solu琀椀ons.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

118

• Problems in this class include a variety of discrete op琀椀miza琀椀on problems (0/1 integer programming, QAP,

etc.), theorem proving, game playing, etc.

Exploratory Decomposi琀椀on Example:

Exploratory Decomposi琀椀on Example:

Specula琀椀ve Decomposi琀椀on

“Specula琀椀ve decomposi琀椀on is used when a program may take one of many possible computa琀椀onally signi昀椀cant

branches depending on the output of other computa琀椀ons that precede it.”

Specula琀椀ve Decomposi琀椀on

• In some applica琀椀ons, dependencies between tasks are not known a-priori.

• For such applica琀椀ons, it is impossible to iden琀椀fy independent tasks

• There are generally two approaches:

conserva琀椀ve approaches, and, op琀椀mis琀椀c approaches

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

119

• Conserva琀椀ve approaches may yield li琀琀le concurrency and op琀椀mis琀椀c approaches may require roll-back

mechanism in the case of an error

Specula琀椀ve Decomposi琀椀on

 Example: Discrete Event Simula琀椀on

Hybrid Decomposi琀椀ons

• O昀琀en, a mix of decomposi琀椀on techniques is necessary for decomposing a problem

• In quicksort, recursive decomposi琀椀on alone limits concurrency (Why?). A mix of data and recursive

decomposi琀椀ons is more desirable

• In discrete event simula琀椀on, there might be concurrency in task processing. A mix of specula琀椀ve

decomposi琀椀on and data decomposi琀椀on may work well

• Even for simple problems like 昀椀nding a minimum of a list of numbers, a mix of data and recursive

decomposi琀椀on works well.

Week 13

Introduc琀椀on to Parallel I/O

Objec琀椀ves

• Introduc琀椀on of parallel I/O.

• Why Parallel I/O?

• I/O bo琀琀leneck

• I/O Performance

What is parallel Input/Output (I/O)?

“A Parallel I/O is the concurrent access to I/O devices by mul琀椀ple processes or threads.”

Why is Parallel I/O important?

• Parallel I/O can signi昀椀cantly improve the performance of parallel applica琀椀ons that are I/O-bound

• This is because I/O opera琀椀ons can o昀琀en be the bo琀琀leneck in parallel applica琀椀ons..

How Parallel I/O Work?

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

120

• Parallel I/O uses mul琀椀ple I/O devices to read or write data in parallel.

• This can be done by using mul琀椀ple disks, mul琀椀ple network interfaces, or a combina琀椀on of both

I/O bo琀琀leneck

There are three main reason for I/O bo琀琀leneck:

• Increasing CPU Speed as compared to I/O

• Increase in number of CPUs

• New applica琀椀on domains that increasing I/O demand

The I/O Challenge

• Problems are increasingly computa琀椀onally challenging

• Large parallel machines needed to perform calcula琀椀ons

• Cri琀椀cal to leverage parallelism in all phases

• Data access is a huge challenge

• Using parallelism to obtain performance

• Finding usable, e昀케cient, portable interfaces

• Understanding and tuning I/O

• Data stored in a single simula琀椀on for some projects

• 100 TB !!

Scalability Limita琀椀on of I/O

The most common I/O subsystems are typically very slow compared to other parts of a supercomputer

• – You can easily saturate the bandwidth:

Once the bandwidth is saturated scaling in I/O stops

• – Adding more compute nodes increases aggregate memory bandwidth and 昀氀ops/s, but not I/O

Factors which a昀昀ect I/O

• I/O is simply data migra琀椀on.

• – Memory→Disk

• I/O is a very expensive opera琀椀on:

 – Interac琀椀ons with data in memory and on disk.

• How is I/O performed?:

 – I/O Pa琀琀ern

 -- Number of processes and 昀椀les

 -- Characteris琀椀cs of 昀椀le access

• Where is I/O performed?:

– Characteris琀椀cs of the computa琀椀onal system.

– Characteris琀椀cs of the 昀椀le system.

I/O Performance

• There is no “One Size Fits All” solu琀椀on to the I/O problem.

• Many I/O pa琀琀erns work well for some range of parameters

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

121

• Bo琀琀lenecks in performance can occur in many loca琀椀ons (Applica琀椀on and/or File system)

• Going to extremes with an I/O pa琀琀ern will typically lead to problems

• Increase performance by decreasing number of I/O opera琀椀ons (latency) and increasing size (bandwidth).

Path from Applica琀椀on to File System

Objec琀椀ves

• Data and Performance.

• – I/O Pa琀琀erns

• Lustre File System.

• I/O Performance Results

Data Performance

I/O Pa琀琀erns: Serial I/O

• One process performs I/O.

• Data Aggrega琀椀on or Duplica琀椀on

• Limited by single I/O process.

• Simple solu琀椀on, easy to manage, but

• Pa琀琀ern does not scale.

• Time increases linearly with amount of data.

• Time increases with number of processes.

I/O Pa琀琀erns: Parallel I/O

• All processes perform I/O to individual 昀椀les.

o Limited by 昀椀le system.

• Pa琀琀ern does not scale at large process counts.

o Number of 昀椀les creates bo琀琀leneck with metadata opera琀椀ons.

o Number of simultaneous disk accesses creates conten琀椀on for 昀椀le system resources.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

122

Parallel I/O: Shared File

• Each process performs I/O to a single 昀椀le which is shared.

• Performance

• Data layout within the shared 昀椀le is very important.

• At large process counts conten琀椀on can build for 昀椀le system resources.

Pa琀琀ern Combina琀椀ons

• Subset of processes which perform I/O.

• Aggrega琀椀on of a group of processes data.

• Serializes I/O in group.

• I/O process may access independent 昀椀les.

• Limits the number of 昀椀les accessed.

• Group of processes perform parallel I/O to a shared 昀椀le.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

123

• Increases the number of shared 昀椀les

• Increase 昀椀le system usage.

• Decreases number of processes which access a shared 昀椀le

• Decrease 昀椀le system conten琀椀on.

Performance Mi琀椀ga琀椀on Strategies

• File-per-process I/O

• Restrict the number of processes/昀椀les wri琀琀en simultaneously.

 - Limits 昀椀le system limita琀椀on.

• Bu昀昀er output to increase the I/O opera琀椀on size.

• Shared 昀椀le I/O

• Restrict the number of processes accessing 昀椀le simultaneously.

 - Limits 昀椀le system limita琀椀on.

• Aggregate data to a subset of processes to increase the I/O opera琀椀on size.

• Decrease the number of I/O opera琀椀ons by wri琀椀ng/reading strided data.

Parallel I/O Tools

Objec琀椀ves

• Which tools can be used for Parallel I/O?

• Understanding of Parallel I/O Tools

Parallel I/O Tools

Collec琀椀ons of system so昀琀ware and libraries have grownup to address I/O issues:

• At Parallel 昀椀le systems

• MPI-IO

• High level libraries

• Rela琀椀onships between these are not always clear.

• Choosing between tools can be di昀케cult.

Parallel I/O Tools: Break up

· Break up support into mul琀椀ple layers:

• High level I/O library maps app. abstrac琀椀ons to a structured, portable 昀椀le format (e.g. HDF5, Parallel

netCDF, ADIOS)

• Middleware layer deals with organizing access by many processes (e.g. MPI-IO)

• Parallel 昀椀le system maintains logical space, provides e昀케cient access to data (e.g. Lustre)

• Applica琀椀on

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

124

• High level I/O library

• MPI-IO Implementa琀椀on

• Parallel 昀椀le system

• Storage Hardware

Parallel File System

Manage storage hardware

• Present single view

• Focus on concurrent, independent access

• Transparent: 昀椀les accessed over the network can be treated the same as 昀椀les on local disk by

programs and users

• Scalable

Parallel I/O Tools: Overview of Kraken Lustre

File I/O: Lustre File System

• Metadata Server (MDS) makes metadata stored in the MDT(Metadata Target) available to Lustre clients.

• Object Storage Server(OSS) provides 昀椀le service, and network request handling for one or more local OSTs.

• Object Storage Target (OST) stores 昀椀le data (chunks of 昀椀les).

File I/O: Lustre File System

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

125

Lustre

Once a 昀椀le is created, write opera琀椀ons take place directly between compute node processes (P0, P1, ...) and Lustre

object storage targets (OSTs), going through the OSSs and bypassing the MDS.

For read opera琀椀ons, 昀椀le data 昀氀ows from the OSTs to memory.

Each OST and MDT maps to a dis琀椀nct subset of the RAID devices

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

126

Striping: Storing a single 昀椀le across mul琀椀ple OSTs

• A single 昀椀le may be stripped across one or more OSTs (chunks of

• the 昀椀le will exist on more than one OST).

• Advantages:

• - an increase in the bandwidth available when accessing the 昀椀le

• - an increase in the available disk space for storing the 昀椀le

• Disadvantage:

- increased overhead due to network opera琀椀ons and server conten琀椀on

File Striping: Physical and Logical Views

• Four applica琀椀on processes write a variable amount of data sequen琀椀ally within a shared 昀椀le.

• This shared 昀椀le is striped over 4 OSTs with 1 MB stripe sizes.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

127

• This write opera琀椀on is not stripe aligned therefore some processes write their data to stripes used by other

processes.

• Some stripes are accessed by more than one process

• May cause conten琀椀on !

Single writer performance and Lustre

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

128

Single writer performance and Lustre

• 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

▪ Unable to take advantage of 昀椀le system parallelism

▪ Access to mul琀椀ple disks adds overhead which hurts performance

• Using more OSTs does not increase write performance. (Parallelism in Lustre cannot be exploit)

Stripe size and I/O Opera琀椀on size

Single OST, 256 MB File Size

• Single OST, 256 MB File Size

• Performance can be limited by the process (transfer size) or 昀椀le system (stripe size).

• Either can become a limi琀椀ng factor in write performance.

• Observa琀椀ons:

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

129

• The best performance is obtained in each case when the I/O opera琀椀on and stripe sizes are similar.

• Larger I/O opera琀椀ons and matching Lustre stripe se琀�ng may improve performance (reduces the

latency of I/O op.)

Single Shared Files and Lustre Stripes

Layout #1:

Keeps data from a process in a con琀椀guous block

Layout #2:

strides this data throughout the 昀椀le

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

130

File Layout and Lustre Stripe Pa琀琀ern

File Layout and Lustre Stripe Pa琀琀ern

• A 1 MB stripe size on Layout #1 results in the lowest performance due to OST conten琀椀on. Each OST is

accessed by every process. (31.18 MB/s)

• The highest performance is seen from a 32 MB stripe size on Layout #1. Each OST is accessed by only one

process. (1788,98 MB/s

A 1 MB stripe size gives be琀琀er performance with Layout #2. Each OST is accessed by only one process. However, the

overall performance is lower due to the increased latency in the write (smaller I/O opera琀椀ons). (442.63MB/s)

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

131

Scalability: File Per Process

The 128 MB per 昀椀le and a 32 MB Transfer size

Scalability: File Per Process

• Performance increases as the number of processes/昀椀les increases un琀椀l OST and metadata conten琀椀on hinder

performance improvements.

• At large process counts (large number of 昀椀les) metadata opera琀椀ons may hinder overall performance due to

OSS and OST conten琀椀on.

Case Study: Parallel I/O

• A par琀椀cular code both reads and writes a 377 GB 昀椀le. Runs on 6000 cores.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

132

• – Total I/O volume (reads and writes) is 850 GB.

• – U琀椀lizes parallel HDF5

• Default Stripe se琀�ngs: count 4, size 1M, index -1.

• – 1800 s run 琀椀me (~ 30 minutes)

• Stripe se琀�ngs: count -1, size 1M, index -1.

• – 625 s run 琀椀me (~ 10 minutes)

Results

 – 66% decrease in run 琀椀me

I/O Scalabity

• Lostre

• Minimize conten琀椀on for 昀椀le system resources.

• A process should not access more than one or two OSTs.

• Decrease the number of I/O opera琀椀ons (latency).

• Increase the size of I/O opera琀椀ons (bandwidth).

Scalability: Summary

• Serial I/O

• Is not scalable.

• Limited by single process which performs I/O

• File per Process

• Limited at large process/昀椀le counts by:

 Metadata Opera琀椀ons

 File System Conten琀椀on

• Single Shared File

• Limited at large process counts by 昀椀le system conten琀椀on

High Level Libraries

Objec琀椀ves

• Understanding of High Level Libraries.

• POSIX Interface.

High Level Libraries

• Provide an appropriate

• abstrac琀椀on for domain

• Block Mul琀椀dimensional datasets

• Typed variables

• A琀琀ributes

• Self-describing, structured 昀椀le Format

• Provide op琀椀miza琀椀ons that middleware cannot

• Map to middleware interface

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

133

• – Encourage collec琀椀ve I/O

POSIX:

• POSIX interface is a useful, ubiquitous interface for building basic I/O tools.

• Standard I/O interface across many pla琀昀orms.

• open, read/write, close func琀椀ons in C/C++/Fortran

• Mechanism almost all serial applica琀椀ons use to perform I/O

• No way of describing collec琀椀ve access

• No constructs useful for parallel I/O.

• Should not be used in parallel applica琀椀ons if performance is desired !.

I/O Libraries

• One of the most used libraries on Jaguar and Kraken.

• Many I/O libraries such as HDF5 , Parallel NetCDF and ADIOS are built atop MPI-IO

• Such libraries are abstrac琀椀ons from MPI-IO

• Such implementa琀椀ons allow for higher informa琀椀on propaga琀椀on to MPI-IO (without user interven琀椀on).

MPI-IO

Objec琀椀ves

• Understanding of MPI-IO basics

• MPI-IO Interfaces

MPI-I/O Basics

• The sending MPI-IO provides a low-level interface to carrying out parallel I/O

• The MPI-IO API has a large number of rou琀椀nes.

• As MPI-IO is part of MPI, you simply compile and link as you would any normal MPI program.

• Facilitate concurrent access by groups of processes

 – Collec琀椀ve I/O

 – Atomicity rules

I/O Interfaces: MPI-IO can be done in 2 basic ways

• Independent MPI-IO

• For independent I/O each MPI task is handling the I/O independently using non collec琀椀ve calls like

MPI_File_write() and MPI_File_read().

• Similar to POSIX I/O, but supports derived datatypes and thus noncon琀椀guous data and non-uniform

strides and can take advantages of MPI_Hints

• Collec琀椀ve MPI-IO

• When doing collec琀椀ve I/O all MPI tasks par琀椀cipa琀椀ng in I/O has to call the same rou琀椀nes. Basic

rou琀椀nes are MPI_File_write_all() andMPI_File_read_all()

• This allows the MPI library to do IO op琀椀miza琀椀on

File MPI Collec琀椀ve Writes and Op琀椀miza琀椀ons

When wri琀椀ng in collec琀椀ve mode, the MPI library carries out a number of op琀椀miza琀椀ons

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

134

• It uses fewer processes to actually do the wri琀椀ng

• Typically one per node

• It aggregates data in appropriate chunks before wri琀椀ng

MPI-IO Interac琀椀on with Lustre

Included in the Cray MPT library.

Environmental variable used to help MPI-IO op琀椀mize I/O performance:

• BackwarMPICH_MPIIO_CB_ALIGN Environmental Variable. (Default 2)

• MPICH_MPIIO_HINTS Environmental

• Can set striping_factor and striping_unit for 昀椀les created with MPI-IO.

• If writes and/or reads u琀椀lize collec琀椀ve calls, collec琀椀ve bu昀昀ering can be u琀椀lized

(romio_cb_read/write) to approximately stripe align I/O within Lustre.

• man mpi for more informa琀椀on

• Bu昀昀ered I/O

Advantages:

• Aggregates smaller read/write opera琀椀ons into larger opera琀椀ons.

• Examples: OS Kernel Bu昀昀er and MPI-IO Collec琀椀ve Bu昀昀ering.

• Disadvantage:

Requires addi琀椀onal memory for the bu昀昀er.

• Can tend to serialize I/O.

• Cau琀椀on:

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

135

•

Frequent bu昀昀er 昀氀ushes can adversely a昀昀ect performance.

Case Study: Bu昀昀ered I/O

A post processing applica琀椀on writes a 1GB 昀椀le

• This occurs from one writer, but occurs in many small write opera琀椀ons.

• – Takes 1080 s (~ 18 minutes) to complete

• IO bu昀昀ers were u琀椀lized to intercept these writes with 4 64 MB bu昀昀ers.

• – Takes 4.5 s to complete. A 99.6% reduc琀椀on in 琀椀me

I/O Best Prac琀椀ces

• Read small, shared 昀椀les from a single task

• Small 昀椀les (< 1 MB to 1 GB) accessed by a single process

• Medium sized 昀椀les (> 1 GB) accessed by a single process

• Large 昀椀les (>> 1 GB)

• Limit the number of 昀椀les within a single directory

• Place small 昀椀les on single OSTs

• Place directories containing many small 昀椀les on single OSTs

• Avoid opening and closing 昀椀les frequently

Week 14

Performance and Scalability

Objec琀椀ves

• What is performance?

• Introduc琀椀on to Analy琀椀cal Modeling

What is Performance?

“Computa琀椀on performance is a measure of how well a computer system can execute a given set of instruc琀椀ons. It

can be measured in terms of execu琀椀on 琀椀me, overhead, speedup, and cost among others.

Analy琀椀cal Modeling – Basics

The parallel run琀椀me of a program depends on the input size, the number of processors, and the communica琀椀on

parameters of the machine.

A sequen琀椀al algorithm is evaluated by its run琀椀me (in general, asympto琀椀c run琀椀me as a func琀椀on of input size).

• An algorithm must therefore be analyzed in the context of the underlying pla琀昀orm.

• The asympto琀椀c run琀椀me of a sequen琀椀al program is iden琀椀cal on any serial pla琀昀orm.

• The parallel run琀椀me of a program depends on the input size, the number of processors, and the

communica琀椀on parameters of the machine.

A number of performance measures are intui琀椀ve

Wall clock 琀椀me - the 琀椀me from the start of the 昀椀rst processor to the stopping 琀椀me of the last processor in a parallel

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

136

ensemble. But how does this scale when the number of processors is changed of the program is ported to another

machine altogether?

How much faster is the parallel version?

This begs the obvious follow up ques琀椀on –

what's the baseline serial version with which we compare?

Can we use a subop琀椀mal serial program to make our parallel program look .

Raw FLOP count - What good are FLOP counts when they don't solve a problem?

Sources of Overhead in Parallel Programs

Objec琀椀ves

• Introduc琀椀on Execu琀椀on Overhead.

• Sources of Overhead in Parallel Programs

Sources of Overhead in Parallel Programs

• If I use two processors, should not my program run twice as fast?

• No - a number of overheads, including wasted computa琀椀on, communica琀椀on, idling, and conten琀椀on cause

degrada琀椀on in performance.

• The execu琀椀on pro昀椀le of a hypothe琀椀cal parallel program execu琀椀ng on eight processing elements.

• Pro昀椀le indicates 琀椀mes spent performing computa琀椀on (both essen琀椀al and excess), communica琀椀on, and idling.

• Inter-process interac琀椀ons:

• Processors working on any non-trivial parallel problem will need to talk to each other.

• Idling:

Processes may idle because of load imbalance, synchroniza琀椀on, or serial components.

• Excess Computa琀椀on:

• The di昀昀erence in computa琀椀on performed by the parallel program and the best serial program is the

excess computa琀椀on overhead incurred by the parallel program.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

137

• This is computa琀椀on not performed by the serial version.

• This might be because the serial algorithm is di昀케cult to parallelize, or that some computa琀椀ons are

repeated across processors to minimize communica琀椀on.

Performance Metrics for Parallel Systems

Objec琀椀ves

• Serial vs Parallel Performance

• Performance Metrics

Performance Metrics for Parallel Systems

• It is important to study the performance of parallel programs with a view to determining the best algorithm,

evalua琀椀ng hardware pla琀昀orms, and examining the bene昀椀ts from parallelism.

• A number of metrics have been used based on the desired outcome of performance analysis.

Performance Metrics for Parallel Systems: Execu琀椀on Time

• Serial run琀椀me of a program is the 琀椀me elapsed between the beginning and the end of its execu琀椀on on a

sequen琀椀al computer.

• The parallel run琀椀me is the 琀椀me that elapses from the moment the 昀椀rst processor starts to the moment the

last processor 昀椀nishes execu琀椀on.

• We denote the serial run琀椀me by TS and the parallel run琀椀me by TP .

Performance Metrics: Total Parallel Overhead/Overhead func琀椀on

• The total 琀椀me collec琀椀vely spent by all the processing elements over and above that required by the fastest

known sequen琀椀al algorithm for solving the same problem on a single processing element.

• Let Tall be the total 琀椀me collec琀椀vely spent by all the processing elements and TS is the serial 琀椀me.

• Tall - TS is then the total 琀椀me spend by all processors combined in non-useful work. This is called the total

overhead.

Performance Metrics: Total Parallel Overhead/Overhead func琀椀on

The total 琀椀me collec琀椀vely spent by all the processing elements

Tall = p TP (p is the number of processors).

The overhead func琀椀on (To) is therefore given by

To = p TP - TS

Performance Metrics for Parallel Systems: Speedup

Objec琀椀ves

• Introduc琀椀on to Speedup.

• Speedup Example

Performance Metrics for Parallel Systems: Speedup

“Speedup (S) is the ra琀椀o of the 琀椀me taken to solve a problem on a single processor to the 琀椀me required to solve the

same problem on a parallel computer with p iden琀椀cal processing elements”

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

138

Performance Metrics: Example

• Consider the problem of adding n numbers by using n processing elements.

• If n is a power of two, we can perform this opera琀椀on in log n steps by propaga琀椀ng par琀椀al sums up a logical

binary tree of processors.

• This 昀椀gure illustrates the procedure for n = 16.

• The processing elements are labeled from 0 to 15.

• Similarly, the 16 numbers to be added are labeled from 0 to 15.

• The sum of the numbers with consecu琀椀ve labels from i to j is denoted by Σj
i .

• Each step shown in Figure consists of one addi琀椀on and the communica琀椀on of a single word.

If an addi琀椀on takes constant 琀椀me, say, tc and communica琀椀on of a single word takes 琀椀me ts + tw,

we have the parallel 琀椀me

TP = Θ (log n)

• We know that TS = Θ (n)

Speedup S is given by S = Θ (n / log n)

Performance Metrics: Speedup

• For a given problem, there might be many serial algorithms available. These algorithms may have di昀昀erent

asympto琀椀c run琀椀mes and may be parallelizable to di昀昀erent degrees.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

139

• For the purpose of compu琀椀ng speedup, we always consider the best sequen琀椀al program as the baseline.

Performance Metrics: Speedup Example

• Consider the problem of parallel bubble sort.

• The serial 琀椀me for bubble sort is 150 seconds.

• The parallel 琀椀me for odd-even sort (e昀케cient paralleliza琀椀on of bubble sort) is 40 seconds

• The speedup would appear to be 150/40 = 3.75.

• But is this really a fair assessment of the system?

• What if serial quicksort only took 30 seconds? In this case, the speedup is 30/40 = 0.75. This is a more

realis琀椀c assessment of the system. .

Performance Metrics: Speedup Bounds

• Speedup can be as low as 0 (the parallel program never terminates).

• Speedup can never exceed the number of processing elements, p.

A speedup greater than p is possible only if each processing element spends less than 琀椀me TS / p solving the problem

In this case, a single processor could be 琀椀me-slided to achieve a faster serial program, which contradicts our

assump琀椀on of fastest serial program as basis for speedup.

Performance Metrics: Super-linear Speedups

• The phenomenon when the speedup become greater than p is known as superlinear speedup.

• One reason for super linearity is that the parallel version does less work than corresponding serial algorithm.

Performance Metrics: Super-linear Speedups

Resource-based super-linearity:

• The higher aggregate cache/memory bandwidth can result in be琀琀er cache-hit ra琀椀os, and therefore super-

linearity.

Example:

• A processor with 64KB of cache yields an 80% hit ra琀椀o. If two processors are used, since the problem

size/processor is smaller, the hit ra琀椀o goes up to 90%. Of the remaining 10% access, 8% come from local

memory and 2% from remote memory.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

140

If DRAM access 琀椀me is 100 ns, cache access 琀椀me is 2 ns, and remote memory access 琀椀me is 400ns, this corresponds

to a speedup of 2.43!

Performance Metrics: E昀케ciency

• E昀케ciency is a measure of the frac琀椀on of 琀椀me for which a processing element is usefully employed

• Mathema琀椀cally, it is given by

• 𝐸 = 𝑆𝑇

Following the bounds on speedup, e昀케ciency can be as low as 0 and as high as 1.

Performance Metrics: Super-linear Speedups

Cost of a Parallel System

• Cost is the product of parallel run琀椀me and the number of processing elements used (p x TP).

• Cost re昀氀ects the sum of the 琀椀me that each processing element spends solving the problem.

• A parallel system is said to be cost-op琀椀mal if the cost of solving a problem on a parallel computer is

asympto琀椀cally iden琀椀cal to serial cost.

• Since E = TS / p TP, for cost op琀椀mal systems, E = O(1).

• Cost is some琀椀mes referred to as work or processor-琀椀me product

Cost of a Parallel System: Example

• Consider the problem of adding numbers on processors

• We have, TP = log n (for p = n).

• The cost of this system is given by p TP = n log n.

• Since the serial run琀椀me of this opera琀椀on is Θ(n), the algorithm is not cost op琀椀mal.

Impact of Non-Cost Op琀椀mality

• Consider a sor琀椀ng algorithm that uses n processing elements to sort the list in 琀椀me (log n)2.

• Since the serial run琀椀me of a (comparison-based) sort is n log n, the speedup and e昀케ciency of this algorithm

are given by n / log n and 1 / log n, respec琀椀vely.

• The p TP product of this algorithm is n (log n)2.

• This algorithm is not cost op琀椀mal but only by a factor of log n.

Impact of Non-Cost Op琀椀mality

• If p < n, assigning n tasks to p processors gives TP = n (log n)2 / p

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

141

• The corresponding speedup of this formula琀椀on is

 p / log n.

• This speedup goes down as the problem size n is increased for a given p !.

Scalability of Parallel Systems

Objec琀椀ves

• The e昀昀ect of Granularity on Performance

• Introduc琀椀on to Scalability of Parallel Systems

Scaling Characteris琀椀cs

E昀昀ect of Granularity on Performance

• O昀琀en, using fewer processors improves performance of parallel systems.

• Using fewer than the maximum possible number of processing elements to execute a parallel algorithm is

called scaling down a parallel system.

• A naive way of scaling down is to think of each processor in the original case as a virtual processor and to

assign virtual processors equally to scaled down processors.

• Since the number of processing elements decreases by a factor of n / p, the computa琀椀on at each processing

element increases by a factor of n / p

• The communica琀椀on cost should not increase by this factor since some of the virtual processors assigned to a

physical processors might talk to each other.

This is the basic reason for the improvement from building granularity.

Scalability of Parallel Systems

Can we build granularity in the previous example in a cost-op琀椀mal fashion?

Each processing element locally adds its n / p numbers in 琀椀me Θ (n / p).

The p par琀椀al sums on p processing elements can be added in 琀椀me Θ(n /p).

 A cost-op琀椀mal way of compu琀椀ng the sum of 16 numbers using four processing elements.

Scaling Characteris琀椀cs of Parallel Programs

The e昀케ciency of a parallel program can be wri琀琀en as:

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

142

Scaling Characteris琀椀cs of Parallel Programs: Example

• Consider the problem of adding numbers on processing elements.

• We have seen that:

• These expressions can be used to calculate the speedup and e昀케ciency for any pair of n and p

• Plo琀�ng the speedup for various input sizes gives us:

• Speedup versus the number of processing elements for adding a list of numbers.

• Speedup tends to saturate and e昀케ciency drops as a consequence of Amdahl's law

Scaling Characteris琀椀cs of Parallel Programs

• Total overhead func琀椀on To is a func琀椀on of both problem size Ts and the number of processing elements p.

• In many cases, To grows sub-linearly with respect to Ts

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

143

In such cases, the e昀케ciency increases if the problem size is increased keeping the number of processing elements

constant.

For such systems, we can simultaneously increase the problem size and number of processors to keep e昀케ciency

constant.

• We call such systems scalable parallel systems

• Recall that cost-op琀椀mal parallel systems have an e昀케ciency of Θ(1).

• Scalability and cost-op琀椀mality are therefore related.

A scalable parallel system can always be made cost-op琀椀mal if the number of processing elements and the

size of the computa琀椀on are chosen appropriately.

Isoe昀케ciency Metric of Scalability

Objec琀椀ves

• Isoe昀케ciency Metric

• Isoe昀케ciency Metric Example

Isoe昀케ciency Metric of Scalability

• For a given problem size, as we increase the number of processing elements, the overall e昀케ciency of the

parallel system goes down for all systems.

• For some systems, the e昀케ciency of a parallel system increases if the problem size is increased while keeping

the number of processing elements constant.

Isoe昀케ciency Metric of Scalability

Varia琀椀on of e昀케ciency: (a) as the number of processing elements is increased for a given problem size; and (b) as the

problem size is increased for a given number of processing elements.

The phenomenon illustrated in graph (b) is not common to all parallel systems.

• What is the rate at which the problem size must increase with respect to the number of processing elements

to keep the e昀케ciency 昀椀xed?

This rate determines the scalability of the system. The slower this rate, the be琀琀er.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

144

Before we formalize this rate, we de昀椀ne the problem size W as the asympto琀椀c number of opera琀椀ons associated with

the best serial algorithm to solve the problem.

• The problem size W can usually be obtained as a func琀椀on of p by algebraic manipula琀椀ons to keep e昀케ciency

constant.

• This func琀椀on is called the isoe昀케ciency func琀椀on.

• This func琀椀on determines the ease with which a parallel system can maintain a constant e昀케ciency and hence

achieve speedups increasing in propor琀椀on to the number of processing elements

Isoe昀케ciency Metric: Example

• The overhead func琀椀on for the problem of adding n numbers on p processing elements is approximately 2p

log p .

Subs琀椀tu琀椀ng To by 2p log p , we get

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

145

𝑊 = K 2p log p

• Thus, the asympto琀椀c isoe昀케ciency func琀椀on for this parallel system is: Θ(p log p)

• If the number of processing elements is increased from p to p’, the problem size (in this case, n) must be

increased by a factor of (p’ log p’) / (p log p) to get the same e昀케ciency as on p processing elements.

Isoe昀케ciency Func琀椀on and Performance metrics

Objec琀椀ves

• Lower Bound and the Isoe昀케ciency Func琀椀on

• Degree of Concurrency and Isoe昀케ciency Func琀椀on

Cost-Op琀椀mality and the Isoe昀케ciency Func琀椀on

Lower Bound on the Isoe昀케ciency Func琀椀on

• For a problem consis琀椀ng of W units of work, no more than W processing elements can be used cost-

op琀椀mally.

• The problem size must increase at least as fast as Θ(p) to maintain 昀椀xed e昀케ciency; hence, Ω(p) is the

asympto琀椀c lower bound on the isoe昀케ciency func琀椀on.

Degree of Concurrency and the Isoe昀케ciency Func琀椀on

• The maximum number of tasks that can be executed simultaneously at any 琀椀me in a parallel algorithm is

called its degree of concurrency

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

146

• If C(W) is the degree of concurrency of a parallel algorithm, then for a problem of size W, no more than C(W)

processing elements can be employed e昀昀ec琀椀vely.

Degree of Concurrency and the Isoe昀케ciency Func琀椀on: Example

• Consider solving a system of n equa琀椀ons in n variables by using Gaussian elimina琀椀on (W = Θ(n3))

• The n variables must be eliminated one a昀琀er the other, and elimina琀椀ng each variable requires Θ(n2)

computa琀椀ons.

• At most Θ(n2) processing elements can be kept busy at any 琀椀me.

• Since W = Θ(n3) for this problem, the degree of concurrency C(W) is Θ(W2/3)

• Given p processing elements, the problem size should be at least Ω(p3/2) to use them all

Minimum Execu琀椀on Time and Minimum Cost-Op琀椀mal Execu琀椀on Time

• O昀琀en, we are interested in the minimum 琀椀me to solu琀椀on.

• We can determine the minimum parallel run琀椀me TP
min for a given W by di昀昀eren琀椀a琀椀ng the expression for TP

w.r.t. p and equa琀椀ng it to zero.

• 𝑑𝑑𝑝TP = 0

• If p0 is the value of p as determined by this equa琀椀on, TP(p0) is the minimum parallel 琀椀me.

Minimum Execu琀椀on Time: Example

• Consider the minimum execu琀椀on 琀椀me for adding n numbers.

• TP =
𝑛𝑝 + 2 log p = 0

• Se琀�ng the deriva琀椀ve w.r.t. p to zero, we have p = n/2

• 𝑇𝑝𝑚𝑖𝑛 = 2 𝑙𝑜𝑔𝑛

• (One may verify that this is indeed a min by verifying that the second deriva琀椀ve is posi琀椀ve).

• Note: that at this point, the formula琀椀on is not cost-op琀椀mal.

Minimum Cost-Op琀椀mal Parallel Time

• Let TP
cost_opt be the minimum cost-op琀椀mal parallel 琀椀me.

• If the isoe昀케ciency func琀椀on of a parallel system is Θ(f(p)) , then a problem of size W can be solved cost-

op琀椀mally if and only if W= Ω(f(p)) .

• In other words, for cost op琀椀mality, p = O(f--1(W)) .

• For cost-op琀椀mal systems, TP = Θ(W/p) , therefore,

Minimum Cost-Op琀椀mal Parallel Time: Example

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

147

Asympto琀椀c Analysis of Parallel Programs

Consider the problem of sor琀椀ng a list of n numbers. The fastest serial programs for this problem run in 琀椀me Θ(n log

n). Consider four parallel algorithms, A1, A2, A3, and A4.

• Comparison of four di昀昀erent algorithms for sor琀椀ng a given list of numbers. The table shows number of

processing elements, parallel run琀椀me, speedup, e昀케ciency and the pTP product.

Asympto琀椀c Analysis of Parallel Programs

• If the metric is speed, algorithm A1 is the best, followed by A3, A4, and A2 (in order of increasing TP).

• In terms of e昀케ciency, A2 and A4 are the best, followed by A3 and A1.

• In terms of cost, algorithms A2 and A4 are cost op琀椀mal, A1 and A3 are not

• It is important to iden琀椀fy the objec琀椀ves of analysis and to use appropriate metrics!

Week 15

MapReduce

Objec琀椀ves

• What is MapReduce?

• Usage of MapReduce.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

148

What is MapReduce?

“MapReduce is a so昀琀ware framework which supports parallel and distributed compu琀椀ng on large data sets.”

MapReduce – Introduc琀椀on

• Simple data-parallel programming model designed for:

• Scalability and

• Fault-tolerance

• Pioneered by Google

• Processes 200 petabytes of data per day (Updated 2022)

• Popularized by open-source Hadoop project

• Used at Yahoo!, Facebook, Amazon

What is MapReduce used for?

• At Google

• Index construc琀椀on for Google Search

• Ar琀椀cle clustering for Google News

• Sta琀椀s琀椀cal machine transla琀椀on

• At Facebook

• Data mining

• Ad op琀椀miza琀椀on

• Spam detec琀椀on

• At Yahoo

• “Web map” powering Yahoo! Search

• Spam detec琀椀on for Yahoo! Mail

MapReduce Usage In Research?

• In Research

Astronomical image analysis (Washington)

Bioinforma琀椀cs (Maryland)

Analyzing Wikipedia con昀氀icts (PARC)

Natural language processing (CMU)

• Par琀椀cle physics (Nebraska

• Ocean climate simula琀椀on (Washington)

How MapReduce work?

• MapReduce has three main phases:

• Map

• Sort

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

149

• Reduce

MapReduce Overview

MapReduce: Examples

Objec琀椀ves.

• MapReduce example based on three phases.

• Five processing stages based MapReduce example.

MapReduce Example

(based on Three Phases)

The canonical MapReduce Example: Word Count

• Example corpus:

Jane likes toast with jam

Joe likes toast

Joe burnt the toast

MapReduce: Map (Slow Mo琀椀on)

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

150

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

151

MapReduce logical data 昀氀ow in 5 processing stages over successive (key, value) pairs.

MapReduce logical data in 5 processing stages : Example

MapReduce Actual Data and Control Flow:

The main responsibility of the MapReduce framework is to e昀케ciently run a user’s program on a distributed

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

152

compu琀椀ng system.

Therefore, the MapReduce framework me琀椀culously handle all processing steps like:

Data and Computa琀椀on

Par琀椀琀椀oning

• Determining the master and worker

• Reading the input data

• (Data Distribu琀椀on

• Map and Combiner func琀椀on

• Synchroniza琀椀on

• Communica琀椀on

• Sor琀椀ng and Grouping

• Reduce func琀椀on

MapReduce Design Goals

• Scalability to large data volumes

• 1000’s of machines, 10,000’s of disks

• Cost-e昀케ciency:

• Commodity machines (cheap, but unreliable)

• Commodity network

• Automa琀椀c fault-tolerance (fewer administrators),

• Easy to use (fewer programmers)

Hadoop

Objec琀椀ves

• Introduc琀椀on Hadoop.

• Key func琀椀ons of Hadoop

What is Hadoop?

“Open source pla琀昀orm for distributed processing of large data. Hadoop is a simpli昀椀ed programming model that

make it easy to write distributed algorithms”

Key func琀椀ons of Hadoop

• The Distribu琀椀on of data and processing across machine

• Management of the cluster

Hadoop scalability

• Hadoop can reach massive scalability by exploi琀椀ng a simple distribu琀椀on architecture and coordina琀椀on

model

• Huge clusters can be made up using (cheap) commodity hardware

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

153

A 1000-CPU machine would be much more expensive than 1000 single-CPU or 250 quad-core machines

◼ Cluster can easily scale up with li琀琀le or no modi昀椀ca琀椀ons to the programs

Hadoop Components

HDFS: Hadoop Distributed File System:

Abstrac琀椀on of a 昀椀le system over a cluster

Stores large amount of data by transparently spreading it on di昀昀erent machines

MapReduce

Simple programming model that enables parallel execu琀椀on of data processing programs

Executes the work on the data near the data

In a nutshell:

HDFS places the data on the cluster and MapReduce does the processing work

Hadoop Principle

• Hadoop is basically a middleware pla琀昀orms that manages a cluster of machines

• The core components is a distributed 昀椀le system (HDFS)

• Files in HDFS are split into blocks that are sca琀琀ered over the cluster

• The cluster can grow inde昀椀nitely simply by adding new nodes

Hadoop Components

MapReduce and Hadoop

Hadoop and MapReduce

• MR works on (big) 昀椀les loaded on HDFS

• Each node in the cluster executes the MR program in parallel, applying map and reduces phases on the

blocks it stores

• Output is wri琀琀en on HDFS

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

154

Hadoop Goods & Bads

• Good for:

• Repe琀椀琀椀ve tasks on big size data

• Not Good for

• Replacing a RDMBS

• Complex processing requiring various phases and/or itera琀椀ons

• Processing small to medium size data

GFS: Google File System

Objec琀椀ves

• Introduc琀椀on to GFS

• GFS Working Process

GFS: Google File System

• “GFS was built primarily as the fundamental storage service for Google’s search engine.

• As the size of the web data that was crawled and saved was quite substan琀椀al, Google needed a distributed

昀椀le system to redundantly store massive amounts of data on cheap and unreliable computers”

Why GFS?

• Component failures

• Component failures are the norm, not the excep琀椀on

• Files are huge

• By tradi琀椀onal standards (many TB)

• Typically 1000 nodes & 300 TB

• Most muta琀椀ons are muta琀椀ons

• Not random access overwrite

• Co-Designing apps & 昀椀le system

• GFS was co-designed with the applica琀椀ons using it

GFS: Design Assump琀椀ons?

• Must monitor & recover from comp failures

• Modest number of large 昀椀les

• Workload:

• Large streaming reads + small random reads

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

155

• Many large sequen琀椀al writes

• Need seman琀椀cs for concurrent

• High sustained bandwidth (More important than low latency)

GFS: Interface

Familiar

• Create, delete, open, close, read, write

• Novel

• Snapshot

• Low cost

• Record append

• Atomicity with mul琀椀ple concurrent writes

GFS: Architecture

GFS: Architecture details

Objec琀椀ves

• What are the GFS Architecture Components func琀椀ons?

• GFS implementa琀椀on.

GFS Architecture: Master

Master

• Stores all metadata

• Namespace

• Access-control informa琀椀on

• Chunk loca琀椀ons

• ‘Lease’ management

• Heartbeats

• Having one master ➔ global knowledge

• Allows be琀琀er placement / replica琀椀on

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

156

• Simpli昀椀es design

GFS Architecture: Chunk Servers

• Store all 昀椀les

• In 昀椀xed-size chucks

• 64 MB

• 64 bit unique handle

• Triple redundancy

GFS Architecture

• Contact single master

• Obtain chunk loca琀椀ons

• Contact one of chunk servers

• Obtain data

GFS Architecture: Master-> Metadata

• Master stores three types

• File & chunk namespaces

• Mapping from 昀椀les → chunks

• Loca琀椀on of chunk replicas

Stored in memory

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

157

Kept persistent through logging

GFS Architecture: Master

Opera琀椀ons

• Replica placement

• New chunk and replica crea琀椀on

• Load balancing

• Unused storage reclaim

GFS: Consistency Model

• All 昀椀le namespace muta琀椀ons are atomic

• Handled exclusively by the master

• Status of a 昀椀le region can be

• Consistent: all clients see the same data

• De昀椀ned: all clients see the same data, which include the en琀椀rety of the last muta琀椀on

• Unde昀椀ned but consistent: all clients see then same data but it may not re昀氀ect what any one

muta琀椀on has wri琀琀en

• Inconsistent

GFS: Leases and Muta琀椀on Order

• Master uses leases to maintain a consistent muta琀椀on order among replicas

• Primary is the chunkserver who is granted a chunk lease

• All others containing replicas are secondaries

• Primary de昀椀nes a muta琀椀on order between muta琀椀ons

• All secondaries follows this order

GFS Write Control & Data昀氀ow

Muta琀椀on Order

→ iden琀椀cal replicas

→ File region may end up containing mingled fragments from di昀昀erent clients (consistent but unde昀椀ned)

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

158

GFS: Limita琀椀ons

• Custom designed

• Only viable in a speci昀椀c environment

• Limited security

HDFS: Hadoop Distributed File System

Objec琀椀ves

• Introduc琀椀on to HDFS

• HDFS Blocks and Nodes.

HDFS: Background

• At Google MapReduce opera琀椀on are run on a special 昀椀le system called Google File System (GFS) that is highly

op琀椀mized for this purpose.

• GFS is not open source

• Doug Cu琀�ng and Yahoo! reverse engineered the GFS and called it Hadoop Distributed File System (HDFS).

• The so昀琀ware framework that supports HDFS, MapReduce and other related en琀椀琀椀es is called the project

Hadoop or simply Hadoop

• This is open source and distributed by Apache

HDFS: Basic Features

• Highly fault-tolerant

• High throughput

• Suitable for applica琀椀ons with large data sets

• Streaming access to 昀椀le system data

• Can be built out of commodity hardware

HDFS: Basic Features

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

159

• HHDFS was designed to be op琀椀mal in performance for a WORM (Write Once, Read Many 琀椀mes) pa琀琀ern

• HDFS is designed to run on clusters of general computers & servers from mul琀椀ple vendors

HDFS: Blocks

• Files in HDFS are divided into block size chunks

• 64 Megabyte default block size

• Block is the minimum size of data that it can read or write

• Blocks simpli昀椀es the storage and replica琀椀on process

• Provides fault tolerance & processing speed enhancement for larger 昀椀les

HDFS: Nodes

• HDFS clusters use 2 types of nodes

• Namenode (master node)

• Datanode (worker node)

HDFS: Nodes

• Namenode

• Manages the 昀椀le system namespace

• Namenode keeps track of the data nodes that have blocks of a distributed 昀椀le assigned

• Maintains the 昀椀le system tree and the metadata for all the 昀椀les and directories in the tree

• Stores on the local disk using 2 昀椀le forms

• Namespace Image

• Edit Log

HDFS: Namenode

• Namenode holds the 昀椀lesystem metadata in its memory

• Namenode’s memory size determines the limit to the number of 昀椀les in a 昀椀lesystem

• But then, what is Metadata?

HDFS: Metadata

• Tradi琀椀onal concept of the library card catalogs

• Categorizes and describes the contents and context of the data 昀椀les

• Maximizes the usefulness of the original data 昀椀le by making it easy to 昀椀nd and use

Structural Metadata

• Focuses on the data structure’s design and speci昀椀ca琀椀on

Descrip琀椀ve Metadata

• Focuses on the individual instances of applica琀椀on data or the data content

HDFS: Metadata Types

• Structural Metadata

• Focuses on the data structure’s design and speci昀椀ca琀椀on

• Descrip琀椀ve Metadata

• Focuses on the individual instances of applica琀椀on data or the data content

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

160

HDFS: Datanodes

• Workhorse of the 昀椀lesystem

• Store and retrieve blocks when requested by the client or the namenode

• Periodically reports back to the namenode with lists of blocks that were stored

HDFS: Client Access

• Client can access the 昀椀lesystem (on behalf of the user) by communica琀椀ng with the namenode and datanodes

• Client can use a 昀椀lesystem interface similar to a POSIX (Portable Opera琀椀ng System Interface)) so the user

code does not need to know about the namenode and datanodes to func琀椀on properly

HDFS: Namenode Failure

• Namenode keeps track of the datanodes that have blocks of a distributed 昀椀le assigned

• Without the namenode, the 昀椀lesystem cannot be used

• If the computer running the namenode malfunc琀椀ons then reconstruc琀椀on of the 昀椀les (from the blocks on the

datanodes) would not be possible

• Files on the 昀椀lesystem would be lost

HDFS: Namenode Failure Resilience

Namenode failure preven琀椀on schemes

• Namenode File Backup

• Secondary Namenode

HDFS

Hadoop 2.x Release Series HDFS Reliability Enhancements

• HDFS Federa琀椀on

• HDFS HA (High-Availability)

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

lOMoARcPSD|19344678

