€) studocu

CS621 Handouts Complete

Scan to open on Studocu

Studocu is not sponsored or endorsed by any college or university
Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row/document/virtual-university-of-pakistan/parallel-and-distributed-computing/cs621-handouts-complete/80211296?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row/course/virtual-university-of-pakistan/parallel-and-distributed-computing/6641749?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row/document/virtual-university-of-pakistan/parallel-and-distributed-computing/cs621-handouts-complete/80211296?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete
https://www.studocu.com/row/course/virtual-university-of-pakistan/parallel-and-distributed-computing/6641749?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

CS621 Parallel and Distributed Computing
About The Course
Topic
1) Introduction of Parallel and
Distributed Computing
2) Classification for Computer Organization
3) Interconnection Networks/Topologies
4) Concurrency Control & Memory Hierarchies
5) Memory Consistency Model
6) Fault Tolerance & Load Balancing
7) Heterogeneity / GPU Architecture
and Programming
8) Message Passing Interface (MPI)
9) Multithreaded Programming
10) Parallel Algorithms & Architectures
11) Parallel I/O, Performance Analysis and Tuning Power
12) Scalability And Performance Studies
13) Programming Models, Scheduling and
Storage Systems
14) Synchronization and OpenMP
15) OpenMP, Types of Distributed Systems
Why study Parallel Computing?
1. Today, serial computers do not exists.
2. Even, your mobile phone is a parallel machine.
3. CPU’s Clock frequencies are getting lower.
4. Number of processors are increasing.
5

Application will get slower, if we don’t learn the skill to develop parallel programs

Week 1

What is Computing?

Objectives

Introduction of Computing.

History of Computing.

What is Computing

“Computing is the process to complete a given goal-oriented task by using computer technology.”

Computing may include the design and development of software and hardware systems for broad range of purposes.

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Used for structuring, processing and managing any kind of information - to aid in the pursuit of scientific studies and
making intelligent systems.

History of Computing

Batch Era

Time Sharing Era

Desktop Era

Network Era

Batch Era: Execution of series of programs on a computer without manual intervention.

Time Sharing: Sharing of computing resource among many users by means of multiprogramming and multi-tasking.
Desktop Era: A personal computer provides computing power to one user.

Network Era: Systems with shared memory and distributed memory.

Serial Vs. Parallel Computing

Objectives

Serial Computing.

Parallel Computing.

Difference between serial and parallel computing

Serial Computing

“Serial computing is a type of processing in which one task is completed at a time and all the tasks are executed by

the processor in a sequence.”

Parallel Computing

“Parallel computing is a type of computing architecture in which several processors simultaneously execute multiple,
smaller calculations broken down from an overall larger, complex problem.”

Serial vs parallel Computing

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Serial: Simple Parallel:

task 1
task 1 l l l l
task 2 task 3 task n
task 2 task 2.1 task 3.1 task n.1
2 task 2.2 task 3.2 task n.2
task 3 . : *
' :
- task 2.k task 3.k task n.k
: |
task n+1 1
J» task n+1

Difference between Serial and parallel Computing

Serial Computing Parallel Computing

Are uniprocessor systems. Are multiprocessor systems.

Can execute one instruction at a time Can execute multiple instructions
At a time

Speed is limited. No limitation on speed.

Lower performance. Higher performance.

Examples: EDVAC, BINAC, and LGP-30. Example: Window 7, 8 and 10.

Introduction to Parallel Computing
Objectives
Parallel Computing

Multi-Processer

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Multi-Core

Introduction to Parallel Computing

“Parallel Computing is the simultaneous execution of the same task (split up and adapted) on multiple processors in
order to obtain faster results.”

It is a kind of computing architecture where the large problems break into independent, smaller, usually similar parts
that can be processed in one go. It is done by multiple CPUs communicating via shared memory, which combines
results upon completion. It helps in performing large computations as it divides the large problem between more
than one processor.

HPC: High Performance/Productivity Computing

Technical Computing

Cluster computing

The term parallel computing architecture sometimes used for a computer with more than one processor available for
processing.

The recent multicore processor (chips with more than one processor core) are some commercial examples which
bring parallel computing to the desktop.

Multi-processor

More than one CPU works together to carry out computer instructions or programs.

Multi-core

Is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of

which reads and executes program instructions.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

(c) Multi-core

Principles of Parallel Computing

Objectives

Finding enough parallelism

Scale

Locality

Load

balance

Coordination and Synchronization

Performance modeling

Finding Enough Parallelism

= By N
CPU State CPU State CPU State
Interrupt Logic Interrupt Logic Interrupt Logic
Execution Execution Execution
; Cache
Units Units | ©ache T | e
.) Y,
(a) Single core (b) Multiprocessor
- . N :
CPU State : CPU State CPU State ; CPU State
Interrupt Logic ; Interrupt Logic Interrupt Logic | : | Interrupt Logic
Execution E Execution Execution Units | : | Execution Units
Units Cache |+ | Units Cacho | Cache
\ J L »

(d) Multi-core with shared cache

Conventional architectures coarsely comprise of a processor, memory system, and the data-path. Each of these

components' present significant performance bottlenecks. Parallelism addresses each of these components in

significant ways.

Scale

Parallelism overhead includes cost of starting a head, accessing data, communicating shared data, synchronization

and extra computation. Algorithms needs sufficiently large units of work to run fast in parallel

Local

ity

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Parallel processors collectively have large and fast cache. The memory addresses are distributed across the
processors, a processor may have faster access to memory locations mapped locally than to memory locations
mapped to other processors

Load Balance

Determines the workload, divide up evenly before staring in case of static load balancing but in dynamic load balance
workload changes dynamically, need to rebalance dynamically.

Coordination and Synchronization

Several kind of synchronization is needed by processes cooperating to perform computation

Performance Modeling

More efficient programming models and tools formulated for massively parallel supercomputers.

Why Use Parallel Computing?

Objectives

Identifying the aspects that make parallel computing more useful.

Computing power

Modern consumer grade computing hardware comes equipped with multiple central processing units (CPUs) and/or
graphics processing units (GPUs) that can process many sets of instructions simultaneously

Performance

Theoretical performance steadily increased, due to the fact that performance is proportional to the product of the
clock frequency and the number of cores.

Scalability

Problem can be scaled up from size to sizes that were out of reach with a serial application. The larger problem sizes
are enabled by the larger amounts of main memory, disk storage, bandwidth over networks and to disk, and CPUs
Solve large problems

Solve large problems by breaking down larger problems into smaller, independent, often similar parts that can be
executed simultaneously by multiple processors communicating via shared memory. Can solve large problems like
Web search engines, processing millions of transaction per second, etc.

Cost

the cost of computation would reduce if we are to deploy parallel computation than sequential computation.
Provide concurrency

Parallelism leads naturally to Concurrency. For example, Several processes trying to print a file on a single printer
Week 2

Introduction to Distributed Computing
Detailed explanation of distributed computing.

Introduction to Distributed Computing

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

“A distributed system is a collection of independent computers that appears to its users as a single coherent

In distributed computing

¢ We have multiple autonomous computers which seems to the user as single system.

e There is no shared memory and computers communicate with each other through message

passing.

e Asingle task is divided among different computers.
Uses or coordinates physically separate computing resources:

e Grid computing

¢ Cloud Computing
Why Use Distributed Computing?
Objective
Identifying the aspects that makes distributed computing more useful.
Heterogeneity
The Internet enables users to access services and run applications over a heterogeneous collection of computers and
networks.
Distribution Transparency
A distributed system that is able to present itself to users and applications as if it were only a single computer system
is said to be transparent.
Openness
An open distributed system is a system that offers services according to standard rules that describe the syntax and
semantics of those services.
Resiliency
With multiple computers, redundancies are implemented to ensure that a single failure doesn't equate to systems-
wide failure.
Scalability
Scalability of a distributed system can be measured along at least three different dimensions: a system can be
scalable with respect to its size, a geographically scalable system, a system can be administratively scalable.
Resources accessibility
The main goal of a distributed system is to make it easy for the users to access remote resources, and to share them
in a controlled and efficient way.
Concurrency
Concurrency between programs sharing data is generally kept under control through synchronization mechanisms for
mutual exclusion and transaction.

Fault tolerance, Error recovery

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Fault tolerance is an important aspect in distributed systems design. A system is fault tolerant if it can continue to

operate in the presence of failures.

Difference between Parallel and Distributed Computing

Objectives

Identifying the key differences between parallel and distributed computing

Distributed computing is often used in tandem with parallel computing. Parallel computing on a single computer uses

multiple processors to process tasks in parallel, whereas distributed parallel computing uses multiple computing

devices to process those tasks.

5o parleiomputing | Dovibued Computng

1. IMany operations are performed System components are located at different
simultaneously locations

2 Single computer is required Uses multiple computers

3. Multiple processors perform multiple Multiple computers perform multiple operations
operations

4. Processors communicate with each Computer communicate with each other through
other through bus message passing.

5. Improves the system performance Improves system scalability, fault tolerance and

resource sharing capabilities

Applications of Parallel and Distributed Computing

Objectives

Scope of parallel and distributed computing.

Science

Engineering

Business

Defense

Global climate modeling

Biology: genomics; protein folding; drug design
Astrophysical modeling

Computational Chemistry

Computational Material Sciences and Nano sciences

Semiconductor design

Earthquake and structural modeling
Computation fluid dynamics (airplane design)
Combustion (engine design)

Crash simulation

Financial and economic modeling

Transaction processing, web services and search engines

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

* Nuclear weapons -- test by simulations

* Cryptography
P2P Network

* eDonkey, BitTorrent, Skype, ...
Google

* 1500+ Linux machines behind Google search engine
Issues in Parallel and Distributed Computing
Failure Handling
Failures, like in any program, are a major problem. With so many processes and users, the consequences of failures
are exacerbated.
Scalability
As a distributed system is scaled, several factors need to be taken into account: size, geography, and administration;
and their associated problems like overloading, control and reliability
Security
As connectivity and sharing increase, security is becoming increasingly important. Increased connectivity can also
lead to unwanted communication, such as electronic junk mail, often called spam.
Process synchronization
One of the most important issues that engineers of distributed systems are facing is synchronizing computations
consisting of thousands of components. Current methods of synchronization like semaphores, monitors, barriers,
remote procedure call, object method invocation, and message passing, do not scale well.
Resource management
In distributed systems, objects consisting of resources are located on different places. Routing is an issue at the
network layer of the distributed system and at the application layer. Resource management in a distributed system
will interact with its heterogeneous nature
Communication and Latency
Distributed Systems have become more effective with the advent of Internet but there are certain requirements for

performance, reliability etc. Effective approaches to communication should be used.
Parallel and Distributed Computing Efforts

Before a program is written or a piece of software is developed, it must first go through a design process.

For parallel and distributed programs, the design process will include three issues:

Decomposition

Decomposition is the process of dividing up the problem and the solution into parts: logical areas and logical
resources.

One of the primary issues of concurrent programming is identifying a natural WBS(Work breakdown structure) for
the software solution at hand.

Communication

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Following issues must be considered when designing parallel or distributed systems:
Important Questions:
e How will this communication be performed if the parts are in different processes or different
computers?
¢ Do the different parts need to share any memory?
¢ How will one part of the software know when the other part is done?
e Which part starts first?

¢ How will one component know if another component has failed?

Synchronization

The WBS designates who does what.

When multiple components of software are working on the same problem, they must be coordinated.

The components' order of execution must be coordinated. . Do all the parts start at the same time or does some
work while others wait?

What two or more components need access to the same resource?

Who gets it first? If some of the parts finish their work long before the other parts, should they be assigned new
work?

Who assigns the new work in such cases?
Week 3

Shared Memory
Objectives
¢ Introduction of Shared Memory.
* Architecture of Shared Memory.
“Shared memory is a type of memory architecture that allows multiple processors or threads to access the same
memory space. In the context of distributed and parallel computing, shared memory can be used to facilitate
communication and synchronization between different processes or threads.”
» Processors have direct access to global memory and I/0
through bus or fast switching network
* Cache Coherency Protocol guarantees consistency
of memory and 1/O accesses
e Each processor also has its own memory (cache)
e Data structures are shared in global address space
¢ Concurrent access to shared memory must be coordinated
¢ Programming Models
* Multithreading (Thread Libraries)
* OpenMP

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

10

Architecture of Shared Memory:

P1 P2 coe Pn
Local Memory M1 M2 eoe Mn
[Shared Bus
!
[Global Shared Memory

Distributed Memory

“Distributed memory refers to a type of parallel computing architecture where each
processor has its own private memory, and communication between processors happens
through message passing. In this architecture, the memory of one processor is not directly

accessible by other processors, and communication between processors occurs explicitly

through messages that are sent and received.”

* Each Processor has direct access only to its local memory

* Processors are connected via high-speed interconnect

e Data structures must be distributed

» Data exchange is done via explicit processor-to-processor communication:

send/receive messages
* Programming Models

* Widely used standard: MPI

* Others: PVM, PARMACS, Express, P4, Chameleon, etc.

Architecture of Distributed Memory:

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

11

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

CPU/1 cPuz| .. CPUn

M1 M2

Communication Interconnect

Flynn’s classification of computer architectures
Objectives
* What is Flynn’s classification of computer architectures?
* Basis for Flynn’s classification.
* Types of Flynn’s classification.
Flynn’s classification of computer architectures (1966):
“Michael J Flynn classified computers on the basis of multiplicity of instruction stream and
data streams in a computer system.”
* Instruction stream
* Data stream
* Single vs. multiple
The four classifications defined by Flynn are based upon the number of concurrent
instruction (or control) and data streams available in the architecture.
* Single Instruction Single Data (SISD)
* Single Instruction Multiple Data (SIMD)
* Multiple Instruction Multiple Data (MIMD)
* Multiple Instruction Single Data (MISD)

12

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Single data SISD MISD

Multiple data SIMD MIMD

SISD (Single-Instruction Single-Data)
Objectives

* Introduction of SISD.

* Architecture of SISD.
SISD (Single-Instruction Single-Data)

“Refers to the traditional von Neumann architecture where a single sequential processing

element (PE) operates on a single stream of data.”

SISD (Single-Instruction Single-Data) Architecture

Instruction Stream

Control Unit Processor Memory

Data
Stream

Instruction
Stream

110

e Conventional single-processor von Neumann computers are classified as SISD systems.
e Atypical non-pipelined architecture with general purpose registers as well as some dedicated special
registers like:
e Program Counter (PC),
* Memory data registers (MDR),
¢ Memory address registers (MAR) and

13

This document is available on ﬁ stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* Instruction registers (IR).

* Perform the same operation on multiple data operands concurrently.

* Concurrency of processing rather than concurrency of execution.

* Serial computer

* Example: A personal computer processing instructions and data on single processor.
SIMD (Single-Instruction Multi-Data)
Objectives

* Introduction of SIMD.

* SIMD Architecture.

* SIMD Schemes.
SIMD (Single-Instruction Multi-Data)

“SIMD is a multiple-processing system that performs one operation simultaneously on more than one piece

of data.”
* All processors in a parallel computer execute the same instructions but operate on different data at
the same time.
* Processors run in synchronous, lockstep function.
* Shared or distributed memory
* SIMD instructions give very speedups in things like linear algebra, or image/video
manipulation/encoding/decoding, etc.

* Examples: Wireless MMX unit, CM-1, CM-2, DAP, MasPar MP-1
SIMD (Single-Instruction Multi-Data) Architecture
* Consists of 2 parts:

* Afront-end Von Neumann computer.

* A processor array: connected to the memory bus of the front end.

14

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Data Stream
—>»| P4 €« > M,
Instruction Stream
—>» P2 |« > M2
Control Unit
[]
A ° ™
[]
Pn € —> Mn

SIMD (Single-Instruction Multi-Data) Schemes
* Classified into two configuration schemes
* Scheme 1 - Each processor has its own local memory.
* Scheme 2 — Processors and memory modules communicate with each other via

interconnection network.

Scheme 1
> J
P, [€ > M,

=<

o

2

P, |e > M2 < > =

Control Unit > g

2

° e

° ° <

° 8

.

9

£

—> Pn [« > Mn <«

—

e SIMD Scheme 2

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

15

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

MISD (Multiple-Instruction Single-Data)
Objectives

* Introduction of MISD.

* MISD Architecture.

MISD (Multiple-Instruction Single-Data)

“A pipeline of multiple independently executing functional units operating on a single stream of data,

forwarding results from one functional unit to the next."

MISD (Multiple-Instruction Single-Data) Architecture

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

—> (A
P, | > M,
=]
=]
2
P2 le » Z2 f—— > M2
Control Unit > S
=
. : .
° c °
® g []
e
£
—> Pn |« > «— > Mn
—

16

M » cu N Y
M | CU 5| P2 Memory

eee
see
< oo0 €

M »| CU » Pn

wea.qs ejeq

Instruction Stream

* Special purpose computer

» Excellent for situation where fault tolerance is critical

* Heterogeneous systems operate on the same data stream and must agree on the result
* Rarely used; some specific use systems (space flight control computers)

* Example: Systolic array

MIMD (Multi-Instruction Multi-data)

Objectives

e Introduction of MIMD.
* MIMD Architecture.

®* MIMD Shared Memory & Message Passing Architectures.

MIMD (Multi-Instruction Multi-data)

“In MIMD all processors in a parallel computer can execute different instructions and operate on various

data at the same time.”

MIMD (Multi-Instruction Multi-data) Architecture

17

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Instruction Stream

Control Unit Processor Memo
110 Instruction Data i
Stream Stream
@
[@ ®
[
Instruction Stream
Control Unit) Processor Memo
10 Instruction Data ry
Stream Stream

* MIMD processors can execute different programs on different processors.

* Each processor has a separate program, and an instruction stream is generated from each program.
* Parallelism achieved by connecting multiple processors together.

* Different programs can be run simultaneously.

* Each processor can perform any operation regardless of what other processors are doing.

e Examples: S-1, Cray-3, Cray T90, Cray T3E, Multiprocessor PCs and 370/168 MP

Special purpose computer
Shared or distributed memory
Made of multiple processors and multiple memory modules connected via some interconnection network.
Classified into two configuration schemes:
* Shared memory

* Message passing

Shared Memory Organization

* Inter-processor coordination is accomplished by reading and writing in a global memory shared by
all processors.
* Any processor can access then local memory of any other processor.

» Typically consists of servers that communicate through a bus and cache memory controller.

Shared Memory Architecture

18

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

P1 e > < > M
=
(o]
Z
P, 3 M2
< » = ¢ >
k)
°
o g o
° S °
® g [
[«}]
=
Pn |« > < > Mn
—

Message Passing Organization
* Point-to-Point
* Each processor has access to its own local memory.
* Communications are performed via send and receive operations.
* Message passing multiprocessors employ a variety of static networks in local communications.

* Must be synchronized among different processors.

Message Passing Architecture

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

M P My P1 eoe My P1

Y Y Y

Interconnection Network

SIMD-MIMD Comparison

Objectives
* Comparison of SIMD-MIMD.
SIMD-MIMD Comparison
* SIMD computers require less hardware than MIMD computers (single control unit).
* SIMD is less expensive as compared to MIMD.
* SIMD follows synchronous processing where as, MIMD incorporates an asynchronous processing.
* In MIMD each processing elements stores its individual copy of the program which increases the
memory requirements. Conversely, SIMD requires less memory as it stores only one copy of the
program.

* MIMD is more complex and efficient as compared to SIMD.

Single Instruction Multiple Multiple Instruction Multiple
Architecture Data (SIMD) Data (MIMD)

. Same instruction on multiple Different instructions on multiple
Type of processing

data seis data sets
Flexibility Limited High
Memory access Shared Separate

Applications with irregular data

Applications with regular data dependencios or complex

Best suited for .
parallelism

computations
Performance High efficiency for parallelizable Flexible, but may be less
tasks efficient for parallelizable tasks

20

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Week 4

Introduction to Fault Tolerance
Objectives
* Introduction of Fault Tolerance.
* Fault Classification.
* Failure Classification.
* Failure Masking.
Fault Tolerance

“A fault-tolerance system is one that continues to provide the required functionality in the presence of fault/failure.”

e A characteristic feature of distributed systems is the notion of partial failure:
* A partial failure may happen when one component in a distributed system fails.
* This failure may affect the proper operation of other components, while at the same time leaving yet
other components totally unaffected.
* Animportant goal in distributed systems design is to construct the system in such a way that it can
automatically recover from partial failures without seriously affecting the overall performance.
Fault Classification
Faults are generally classified as transient, intermittent, or permanent:
* Transient fault: Occurs once and then disappear. If the operation is repeated, the fault goes away.
* Intermittent fault: Occurs, then vanishes of its own accord, then reappears, and so on. A loose
contact on a connector will often cause an intermittent fault.
* Permanent fault: Is one that continues to exist until the faulty component is replaced. Burnt-out
chips, software bugs, and disk head crashes are examples of permanent faults.
Failure Classification
Faults are generally classified into five categories
* Crash failure: A server halts but working correctly until it halts.
* Omission failure: A server fails to respond to incoming requests.
» Timing failure: A server’s response lies outside the specified time interval.
* Response failure: A server’s response is incorrect.
* Arbitrary failure: A server may produce the arbitrary responses at arbitrary times.
Failure Masking

“Failure masking is a fault tolerance technique that hides occurrence of failures from other processes.”

* The most common approach to failure masking is redundancy which is categorized into three types
* Information redundancy: Add extra bits to allow recovery from garbled bits.
» Time redundancy: Repeat an action if needed.
* Physical redundancy: Add extra equipment or processes so that the system can tolerate the loss or

malfunctioning of some components.

21

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Process Resilience
Objectives
* Introduction of Process Resilience
e Flat Groups versus Hierarchical Groups.
* Failure Masking and Replications
e Approaches for Replications
Process Resilience
“Process resilience incorporates techniques by which one or more processes can fail without seriously disturbing the
rest of the system.”
¢ Related to this issue is reliable multicasting, by which message transmission to a collection of processes is
guaranteed to succeed.
e Reliable multicasting is often necessary to keep processes synchronized.
e Protection against process failures can be achieved by process replication, organizing several identical
processes into a group.
e Groups are categorized into two categories: Flat Group and Hierarchy Group.
Flat Group
* All processes are equal.
* The processes make decisions collectively.

* No single point of failure, but decision making is more complicated as consensus is required.

Flat group

Hierarchical Group
* Asingle coordinator makes all decisions.
* Single point-of failure, however: decisions are easily and quickly made by the coordinator without first having
to get consensus.

* Group is transparent to its users; the whole group is dealt with as a single process.

22

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Hierarchical group Coordinator
\ e
\ .~

Y
\

SN

/ ‘,r' _/ /

Worke

AN
_/ /

Failure Masking and Replication
e By organizing a fault tolerant group of processes , we can protect a single vulnerable process.
e Two approaches to arranging the replication of the group are:
* Primary-base protocols and Replicated-write protocols
Primary-Base Protocols
e Appears in the form of a primary-backup protocol
e A group of processes is organized in a hierarchical fashion in which a primary coordinates all write
operations.
* When the primary crashes, the backups execute some election algorithm to choose a new primary.
Replicated-Write Protocols
* Replicated-write protocols are used in the form of active replication, as well as by means of quorum-based
protocols.
* Solutions correspond to organizing a collection of identical processes into a flat group.
¢ These groups have no single point of failure, at the cost of distributed coordination.
Reliable Client-Server Communication
Objectives
¢ Understanding of Reliable Client-Server Communication
¢ RPC Semantics in the Presence of Failures.
Reliable Client-Server Communication
e Fault tolerance in distributed systems concentrates on faulty processes.
¢ However, communication failures should also be considered .
* A communication channel may exhibit crash, omission, timing, and arbitrary failures.
Peer to Peer Communication
e Reliable point-to-point communication is established by making use of a reliable transport protocol, such as
TCP.
e TCP masks omission failures, which occur in the form of lost messages by using acknowledgments and
retransmissions.
e Crash failures of connections are not masked. The only way to mask such failures is to let the distributed

system attempt to automatically set up a new connection.

23

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

RPC Semantics in the Presence of Failures

e Remote Procedure Call (RPC) mechanism works well as long as both the client and server function perfectly.

¢ Five classes of RPC failure can be identified:

The client is unable to locate the server.

The request message from the client to the server is lost
The server crashes after receiving a request.

The reply message from the server to the client is lost.

The client crashes after sending a request.

Server in Client-Server Communication

The sequence of events at a server is shown in Fig.

(a) A request arrives, is carried out, and a reply is sent.

(b) A request arrives and is carried out, just as before, but the server crashes before it can send the reply.

(c) Again, a request arrives, but this time the server crashes before it can even be carried out and no reply is sent

back.

REQ Server REQ Server REQ Server
Receive —» Receive — P Receive
Execute Execute Crash
<REP Reply N:REP NzREP

(@) (b) ©

A server in client-server communication
a) Normal case

b) Crash after execution

¢) Crash before execution

Server crashes are dealt with by implementing one of three possible implementation philosophies:

At least once semantics: A guarantee is given that the RPC occurred at least once, but (also) possibly
more that once.

At most once semantics: A guarantee is given that the RPC occurred at most once, but possibly not
atall.

No semantics: Nothing is guaranteed, and client and servers take their chances

Client in Client-Server Communication

24

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

When a client sends a request to a server and crashes before the server replies.At this point a computation is

active and no parent is waiting for the result. Such an unwanted computation is called an orphan. Four

orphan solutions have been proposed:

Extermination: The orphan is simply killed-off.

Reincarnation: Each client session has an epoch associated with it, making orphans easy to spot.
Gentle reincarnation: When a new epoch is identified, an attempt is made to locate a requests
owner, otherwise the orphan is killed.

Expiration: If the RPC cannot be completed within a standard amount of time, it is assumed to have

expired.

Reliable Group Communication

Objectives

* Understanding of Reliable Group Communication.

e Reliable-Multicasting Schemes.

Reliable Group Communication

“Reliable multicast services guarantee that all messages are delivered to all members of a process group.”

Basic Reliable-Multicasting Schemes

A simple solution to reliable multicasting when all receivers are known and are assumed not to fail.

The sending process assigns a sequence number to each message it multicasts.

Assume that messages are received in the order they are sent.

Each multicast message is stored locally in a history buffer at the sender.

Assuming the receivers are known to the sender, the sender simply keeps the message in its history
buffer until each receiver has returned an acknowledgment.

If a receiver detects it is missing a message, it may return a negative acknowledgment, requesting

the sender for a retransmission.

25

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Receiver missed
message #24

Sender Receiver Receiver \ Receiver Receiver
History M25
buffer ™ Last =24 Last =24 Last =23 Last=24
M25 M25 [M25] M25
e
Network
(a)
Sender Receiver Receiver Receiver Receiver

Last =25 Last = 24 Last = 23 Last =24

8 M25 M25 M25 M25

ACK 25) ackzs |) Missed 24 J ACK 25 J

(b)

Network

(a) Message transmission — note that the third receiver is expecting 24.

(b) Reporting feedback — the third receiver informs the sender.

Distributed Commit

Objectives
* |ntroduction of Distributed Commit

e Distributed Commit Protocol Phases.

Distributed Commit

“The distributed commit problem involves having an operation being performed by each member of a process group,

|ll

or none at al
¢ Inthe case of reliable multicasting, the operation is the delivery of a message
e With distributed transactions, the operation may be the commit of a transaction at a single site that takes part in the
transaction.
e Other examples of distributed commit, and how it can be solved are discussed in Tanisch (2000).
¢ Commit protocol is distributed into three types:
¢ Single-phase commit
¢ Two-phase commit

¢ Three-phase commit.

One-Phase Commit Protocol:

26

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

* Coordinator tells all other processes that are also involved, called participants, whether to (locally)
perform the operation in question
* If one of the participants cannot perform the operation, there is no way to tell the coordinator
* It cannot efficiently handle the failure of the coordinator.
* The solutions:
Two-Phase and Three-Phase Commit Protocols
Two-Phase Commit Protocol
“Assuming that no failures occur, the protocol consists of the following two phases, each consisting of two
steps: The first phase is the voting phase, and the second phase is the decision phase.”
* The coordinator sends a VOTE_REQUEST message to all participants.
* A group member returns VOTE_COMMIIT if it can commit locally, otherwise VOTE_ABORT message.
* All votes are collected by the coordinator.
* A GLOBAL _COMMIT is sent if all the group members voted to commit.
* If one group member voted to abort, a GLOBAL_ABORT is sent.

* Group members then COMMIT or ABORT based on the last message received from the coordinator

Vote-request
INIT Vote-abort

Vote-request
Vote-commit

Commit
Vote-request

Vote-abort
Global-abort

Global-commit
ACK

Vote-commit
Global-commit

COMMIT
(a) (b)

Global-abort
ACK

(a) The finite state machine for the coordinator in 2PC.
(b) The finite state machine for a participant.
* It can lead to both the coordinator and the participants blocking, which may lead to the dreaded
deadlock.
* If the coordinator crashes, the participants may not be able to reach a final decision, and they may,
therefore, block until the coordinator recovers.
* Two-Phase Commit is known as a blocking-commit protocol for this reason.
* The solution: Three-Phase Commit Protocol

Three-Phase Commit Protocol

27

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* Skeen (1981) developed a variant of 2PC, called the three-phase commit protocol (3PC), that avoids
blocking processes in the presence of fail-stop crashes.
* The states of the coordinator and each participant satisfy the following two conditions:
* There is no single state from which it is possible to make a transition directly to either a
COMMIT or an ABORT state.
* There is no state in which it is not possible to make a final decision, and from which a

transition to a COMMIT state can be made.

Vote-request
Vote-abort

Vote-request
Vote-commit

Commit
Vote-request

Global-commit
ACK

Vote-commit
Global-commit

Vote-abort

YOie-abor _ Global-abort
Global-abort

ACK

(a) (b)

(a) The finite state machine for the coordinator in 3PC.
(b) The finite state machine for a participant.
Recovery
Objectives
e Basic Concept of Recovery
e Types of Recovery
Recovery
“The whole idea of error recovery is to replace an erroneous state with an error-free state. Once a failure has
occurred, it is essential that the process where the failure happened recovers to a correct state.”
e Recovery from an error is fundamental to fault tolerance. Two main forms of recovery are:

» Backward Recovery: Return the system to some previous correct state (using checkpoints), then
continue executing.

* Forward Recovery: When the system has entered an erroneous state, instead of moving back to a
previous, checkpointed state, an attempt is made to bring the system in a correct new state from
which it can continue to execute

Backward Recovery
¢ Advantages:

* Generally applicable method independent of any specific system or process.

28

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

* It can be integrated into (the middleware layer) of a distributed system as a general-purpose service.
* Disadvantages:

* Restoring a system or process to a previous state is generally a relatively costly operation in terms of
performance.

* Backward error recovery mechanisms are independent of the distributed application for which they
are actually used, no guarantees can be given that once recovery has taken place, the same or similar
failure will not happen again.

Forward Recovery
* Advantages:
* Generally, have low overhead.
e Disadvantages:

* It has to be known in advance which errors may occur. Only in that case is it possible to correct those
errors and move to a new state.

* When an error occurs, the recovery mechanism then knows what to do to bring the system forward

to a correct state.
Week 5

Introduction to Load Balancing
Objectives
* Introduction of Load Balancing.
* Issues in Load Balancing
Introduction to Load Balancing

“The goal of partitioning is to distribute the computation load to each processing element such that all processing

elements become neither overloaded nor idle and all processors can finish their computation at about the same
time”
» Distributed computing system provides high performance environment that are able to provide high

processing power
* Deals with distribution of processes among processors connected by a network

* For homogeneous parallel systems, the computation load is distributed as evenly as possible in a parallel

computer.

* For heterogeneous parallel system, the computation load is distributed according to the computing power of

each processor.

Week 5

Introduction to Load Balancing

Objectives

29

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

¢ Introduction of Load Balancing.

e Issues in Load Balancing

Introduction to Load Balancing

“The goal of partitioning is to distribute the computation load to each processing element such that all processing

elements become neither overloaded nor idle and all processors can finish their computation at about the same

”

time.

* Distributed computing system provides high performance environment that are able to provide high

processing power.

* Deals with distribution of processes among processors connected by a network.

* For homogeneous parallel systems, the computation load is distributed as evenly as possible in a parallel

computer.

e For heterogeneous parallel system, the computation load is distributed according to the computing power of

each processor.

Issues in Load Balancing

A load balancing strategy needs to resolve following issues:

What load information (measurements) can be used.

When to invoke balancing, i.e., conditions to balance.

Which nodes make the load balancing decision.
How should old data be handled.

How load migrations are to be managed.

Mapping Techniques for Load Balancing

Objectives

¢ Understanding of Mapping Techniques for Load Balancing.

¢ The need of Mapping Techniques for Load Balancing

Mapping Techniques for Load Balancing

* The computation domain is partitioned into several subdomains and then mapped onto processors of a
parallel system with the objective that all tasks complete in the shortest amount of elapsed time.
¢ In general, the number of subdomains equals to the number of processors in a parallel system.

¢ In order to achieve a small execution time, the overheads of executing the tasks in parallel must be

minimized.

Quality of Load Balancing Algorithm

* The quality of load balancing algorithms can be measured by two factor:

Number of steps: Needed to get the balanced state.

Extent of loads: Moves over the link to which nodes are connected.

Mapping Techniques for Load Balancing

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

30

There are two key sources of overhead. The time spent in inter-process interaction is one source of
overhead. Another important source of overhead is the time that some processes may spend being idle.
A good mapping of tasks onto processes must strive to achieve the twin objectives:

* Reducing the amount of time processes spend in interacting with each other

* Reducing the total amount of time some processes are idle while the others are engaged in

performing some tasks.

Mapping techniques used in parallel algorithms can be broadly classified into two categories

* Static Mapping

* Dynamic Mapping.
The parallel programming paradigm and the characteristics of tasks and the interactions among them

determine whether a static or a dynamic mapping is more suitable.

Static Mapping for Load Balancing

Objectives

Understanding of Static Mapping for Load Balancing.
Advantages

Disadvantages

Static Mapping for Load Balancing

“Static mapping techniques distribute the tasks among processes prior to the execution of the algorithm.”

Processes are assigned to the processors at compile time.

Once the process are assigned, no change or reassignment is possible at run time.
Need a good estimate of task sizes.

Number of jobs on each node is fix.

Scheduling decisions are made probabilistically.

Advantages of Static Mapping

Algorithms that make use of static mapping are in general easier to design and program

Since the mapping is fixed, there is no need for communication between processing nodes to determine task
allocation.

This reduces communication overhead and can improve performance.

Less network traffic due to load balancing related messages

Disadvantages of Static Mapping

It is very difficult to compute a-priori execution time.
Lack of Fault Tolerance: Static mapping does not account for node failures, which can result in system
downtime if a node fails.

The process allocation cannot be changed during execution.

Schemes for Static Mapping

Objectives

31

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e Mappings Based on Data Partitioning.
e Mappings Based on Task Partitioning
e Hierarchical Mappings

Scheme for Static Mapping

» Static mapping is often used in conjunction with a decomposition based on data partitioning.
» Static mapping is also used for mapping certain problems that are expressed naturally by a static task-
dependency graph. Mapping schemes based on data partitioning and task partitioning are:
* Mappings Based on Data Partitioning
* Mappings Based on Task Partitioning
* Hierarchical Partitioning
Mappings Based on Data Partitioning
Mappings based on data partitioning’s two of the most common ways of representing data in algorithms, namely,
arrays and graphs.
* Block Distribution Schemes
* Block Array Distributions
* Cyclic and Block-Cyclic Distributions
* Randomized Block Distributions

Mappings Based on Data Partitioning: Block Array Distribution

The data partitioning can be combined with the “owner-computes” rule to partition the computation into subtasks.

The simplest data decomposition schemes for dense matrices are 1-D block distribution schemes.

In general, higher dimension decomposition allows the use of higher number of processes.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

32

Row-wise Distribution Column-wise Distribution

PO

P1

P2

P3

PO (P1|P2 |P3|P4 |P5|P6|P7

P4

P5

P6

P7

Examples of one-dimensional partitioning of an array

among eight processes.

PO P1) P3
PO |P1|P2|P3|P4|P5|P6|P7
P4 P5 P6 P7
P8 Po | P10 | P11
P8 | P9 [P10|P11|P12|P13[P14|P15
P12 | P13 | P14 | P15

Examples of two-dimensional distributions of an array,
(a) on a 4 x 4 process grid, and (b) on a 2 x 8 process grid.

Mappings Based on Data Partitioning: Cyclic and Block-Cyclic Distributions

The central idea behind a block-cyclic distribution is to partition an array into many more blocks than the number of

available processes.

Then we assign the partitions (and the associated tasks) to processes in a round-robin manner so that each process

gets several non-adjacent blocks.

More precisely, in a one-dimensional block-cyclic distribution of a matrix among p processes, the rows (columns) of

an n x n matrix are divided into ap groups of n/(ap).

, LTI T EpEE - g
I_ I [o -F'| I [= M =
ENEEEEEEEEENENEN B J_E

P2 7] |
I] ol]

P | i 11 |

| 1111 L

A — Fa [I:

| | l

. - g |

T B P i

il J____f_f__' 7 = [

(a)

33

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Examples of one- and two-dimensional block-cyclic distributions among four processes. (a) The rows of the array are
grouped into blocks each consisting of two rows, resulting in eight blocks of rows. These blocks are distributed to four
processes in a wraparound fashion. (b) The matrix is blocked into 16 blocks each of size 4 x 4, and it is mapped onto a
2 x 2 grid of processes in a wraparound fashion.

Mappings Based on Data Partitioning: Randomized Block Distribution

Just like a block-cyclic distribution, load balance is sought by partitioning the array into many more blocks than the
number of available processes.

However, the blocks are uniformly and randomly distributed among the processes.

A one-dimensional randomized block mapping of 12 blocks onto four process (i.e., a = 3) is shown figure.

V=I[0,1,2,34506789 10, 1]

random(V)=8,2,6,0,3,7, 11, 1,9, 5,4, 10]

mappmg=8 26 037 11195 410
I || | [|

Po Py Py Py

Mappings Based on Task Partitioning
e Partitioning a given task-dependency graph across processes.
¢ Determining an optimal mapping for a general task-dependency graph is an NP-complete problem.
e Excellent heuristics exist for structured graphs
Mappings Based on Task Partitioning: Mapping a Binary Tree Dependency Graph
Example illustrates the dependency graph of one view of quick-sort and how it can be assigned to processes in a

hypercube.

34

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Mappings Based on Task Partitioning: Mapping a Sparse Graph

Reducing interaction overhead in sparse matrix-vector multiplication by partitioning the task-interaction graph.

Sparse graph for computing a sparse matrix-vector product and

its mapping. b
Process 0 E C0=(4,5,6,7,8)
Process 1 m C1=(0,1,2,3,8,9,10,11)
Process 2 E C2=(0,4,5,6)
Process 0
C0=(1,2,6,9)

Process 2 C2=(1,2,4,5,738)

Hierarchical Mappings

A hierarchical mapping can have many layers and different decomposition and mapping techniques may be suitable

for different layers.”
¢ If the tasks are large enough, then a better mapping can be obtained by a further decomposition of the tasks

into smaller subtasks.

35

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e Asingle mapping is inadequate.
e Task mapping at the top layer and Data partitioning within each level
e Static mapping based on hierarchical mappings can be used in a variety of applications, including scientific

simulations, machine learning, and image processing.

PO | P1 | P4 | P5

F N

4 L N\
P2 P3 Pé P7
PO | P1 P4 | P5
r » < N\ ' > i)
P2 P3 P6 P7
PO | P1 P2 | P3 P4 | P5 P6 | P7
PO P1 P2 P3 P4 P5 P6 P7

An example of hierarchical mapping of a task-dependency graph. Each node represented by an array is a supertask.

The partitioning of the arrays represents subtasks, which are mapped onto eight processes.
Dynamic Mapping for Load Balancing
Objectives
* Introduction of Dynamic Mapping
* Advantages of Dynamic Mapping
» Disadvantages of Dynamic Mapping
Dynamic Mapping for Load Balancing

“Dynamic mapping techniques distribute the work among processes

during the execution of the algorithm.”

* If tasks are generated dynamically, then they must be mapped dynamically too

» If task sizes are unknown, then a static mapping can potentially lead to serious load-imbalances and dynamic

mappings are usually more effective.
* If the amount of data associated with tasks is large
Advantages of Dynamic Mapping
* Greater Resource utilization.
¢ Enhanced Load Balancing
e The process allocation can be modified during execution if required.
¢ Scalability: Dynamic mapping can scale the system up or down based on the workload.

Disadvantages of Dynamic Mapping

e Algorithms that require dynamic mapping are usually more complicated, particularly in the message-passing

programming paradigm.

e Greater overhead due to process redistribution.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

36

* Lack of determinism: Dynamic mapping introduces non-determinism into the system
Schemes for Dynamic Mapping
Objectives
* Schemes for Dynamic Mapping
* Centralized Dynamic Mapping Scheme
* Distributed Dynamic Mapping Scheme.
Schemes for Dynamic Mapping
* Schemes for Dynamic Mapping
* Centralized Schemes
* Master Process
* Slave Processes
* Distributed Schemes
Centralized Dynamic Load Balancing Scheme
* All executable tasks are maintained in a common central data structure, or they are maintained by a special
process. If a special process is designated to manage the pool of available tasks, then it is often referred to as
the master and the other processes that depend on the master to obtain work are referred to as slaves.
* Whenever a process has no work, it takes a portion of available work from the central data structure or the
master process.
* When a new task is generated, it is added to this centralized data structure or reported to the master
process.
* Centralized load balancing schemes are usually easier to implement than distributed schemes.
* If number of processes increases, master may become the bottleneck.
* Chunk scheduling: A process picks up multiple tasks at once.
* Large chunk sizes may lead to significant load imbalances as well.
* Schemes to gradually decrease chunk size as the computation progresses.
Distributed Dynamic Load Balancing Scheme
“In a distributed dynamic load balancing scheme, the set of executable tasks are distributed

among processes which exchange tasks at run time to balance work. Each process can send

work to or receive work from any other process.”
» Alleviates the bottleneck in centralized schemes. Critical parameters of a distributed load balancing scheme
are as follows:
* How are the sending and receiving processes paired together?
* Is the work transfer initiated by the sender or the receiver?
* How much work is transferred in each exchange?

* When is the work transfer performed?
Week 6

37

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Concurrency Control
Objectives
e Whatis Concurrency?
e Mechanisms for Concurrency Control
Concurrency Control
“Concurrency is the task of running two or more computations over the same time interval. Two events are said to be

concurrent if they occur within the same time interval.”

What is Concurrency?
* Concurrent doesn't necessarily mean at the same exact instant. For example, two tasks may occur
concurrently within the same second but with each task executing within different fractions of the second.
e Concurrent tasks can execute in a single or multiprocessing environment

* Inasingle processing environment, concurrent tasks exist at the same time and execute within the
same time period by context switching.

* Ina multiprocessor environment, if enough processors are free, concurrent tasks may execute at the
same instant over the same time period. The determining factor for what makes an acceptable time
period for concurrency is relative to the application.

Concurrency Control
* There must be an implicit or explicit control over concurrency. It is both hazardous and unsafe when multiple
flows of executions simultaneously operate in the same address space without any kind of agreement on
ordered access. Two or more activities might access the same data and thus induce data corruption as well as
inconsistent or invalid application state.
* Multiple activities that work jointly on a problem need an agreement on their common progress. Both issues
represent fundamental challenges of concurrency and concurrent programming.
Synchronization and Coordination are two basic approaches to tackle this challenge:

* Synchronization is a mechanism that controls access on shared resources between multiple activities.
It enforces exclusiveness and ordered access on the resource by different activities.

* Coordination aims at the orchestration of collaborating activities.

Benefits of Concurrency
* The overall time to perform the series of tasks is reduced.
* Concurrent processes can reduce duplication in code.
* The overall runtime of the algorithm can be significantly reduced.
* Concurrency control can also increase the scalability of parallel and distributed computing systems
* Redundancy can make systems more reliable.

* More real-world problems can be solved than with sequential algorithms alone
Concurrency Control: Basic Approaches to Achieving Concurrency

Objectives
38

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

* Understanding of Concurrency Control.
* Parallel Programming Technique

* Distributed Programming Technique

Achieving Concurrency
Parallel programming and distributed programming are two basic approaches for achieving concurrency:
* Parallel programming techniques assign the work a program has do to two or more processors within
a single physical or a single virtual computer.
* Distributed programming techniques assign the work a program has to do to two or more processes
where the processes may or may not exist on the same computer.
Achieving Concurrency: Parallel Programming Technique
* The parallel application consists of one program divided into four tasks. Each task executes on a separate
processor; therefore, each task may execute simultaneously. The tasks can be implemented by either a

process or a thread.

APPLICATION'S

CONCURRENTLY
EXECUTING TASKS
SINGLE PHYSICAL CR
Progmm WIRTUAL COMPUTER

Task &

Task B

0 -

Task C >

Task D

R

-

Typical architecture for a parallel program.
Achieving Concurrency: Distributed Programming Technique
* The distributed application consists of three separate programs with each program executing on a separate
computer. Program 3 consists of two separate parts that execute on the same computer. Although task A and
D of Program 3 are on the same computer, they are distributed because they are implemented by two

separate processes.

39

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

DISTRIBUTED APPLICATION

COMPUTER & COMPUTER B COMPUTER ©
Pregram 1 Program 2 Pragram 3
METYIC

Task i

|

|

|

R NETWORK !

Task C COMNECTION Task B COHNECTICH Task A |
. " |

|

|

|

|

Typical architecture for a parallel and distributed program.
Concurrency Control: Models for Programming Concurrency
Objectives
* Models of Programming Concurrency.
* Van Roy Approaches for Programming Concurrency.
Concurrency Control: Models for Programming Concurrency
Van Roy introduces four main approaches for programming concurrency:

* Sequential Programming.

* Declarative Concurrency.

* Message-passing Concurrency.

* Shared-state Concurrency.
Sequential Programming
In this deterministic programming model, no concurrency is used at all. In its strongest form, there is a total order of
all operations of the program. Weaker forms still keep the deterministic behavior. However, they either make no
guarantees on the exact execution order to the programmer a priori. Or they provide mechanisms for explicit
preemption of the task currently active, as co-routines do, for instance.
Declarative Concurrency
Declarative programming is a programming model that favors implicit control flow of computations. Control flow is
not described directly, it is rather a result of computational logic of the program. The declarative concurrency model
extends the declarative programming model by allowing multiple flows of executions. It adds implicit concurrency
that is based on a data-driven or a demand-driven approach. While this introduces some form of nondeterminism at
runtime, the nondeterminism is generally not observable from the outside.
Message-passing Concurrency
This model is a programming style that allows concurrent activities to communicate via messages. Generally, this is
the only allowed form of interaction between activities which are otherwise completely isolated. Message passing
can be either synchronous or asynchronous resulting in different mechanisms and patterns for synchronization and
coordination

Shared-state Concurrency

40

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Shared-state concurrency is an extended programming model where multiple activities are allowed to access
contended resources and states. Sharing the exact same resources and states among different activities requires

dedicated mechanisms for synchronization of access and coordination between activities. The general

nondeterminism and missing invariants of this model would otherwise directly cause problems regarding consistency

and state validity.
Memory Hierarchies
Objectives
* Introduction of Memory Hierarchy
* Characteristics of Memory Hierarchy
Memory Hierarchies
“Memory Hierarchy, in Computer System Design, is an enhancement that helps in organizing the memory so that it
can minimize the access time. The development of the Memory Hierarchy occurred on a behavior of a program
known as locality of references.”
We are concerned with five types of memory:

e Registers: are the fastest type of memory, which are located internal to a processor. These elements are
primarily used for temporary storage of operands, small partitions of memory, etc., and are assumed to be
one word (32 bits) in length in the MIPS architecture.

* Cache: is a very fast type of memory that can be external or internal to a given processor. Cache is used for
temporary storage of blocks of data obtained from main memory (read operation) or created by the
processor and eventually written to main memory (write operation).

* Main Memory: is modelled as a large, linear array of storage elements that is partitioned into static and
dynamic storage. Main memory is used primarily for storage of data that a program produces during its

execution, as well as for instruction storage.

¢ Disk Storage: is much slower than main memory, but also has much higher capacity than the preceding three

types of memory.

¢ Archival Storage: is offline storage such as a CD-ROM jukebox or (in former years) rooms filled with racks

containing magnetic tapes. This type of storage has a very long access time, in comparison with disk storage,

and is also designed to be much less volatile than disk data.

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

41

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

cPU N 0000
T Registers Level 0
Cache Memory
Increase in / (SRAMS) — Level 1
cost per bit . Main Memory
; (DRAMSs) Level 2

T /Register’,
| Increasing order / Memory \

of Access Time \
Ratio Cache Memory

Main Memory \—— Primary Memory

Magnetic Disks Auxillary
Memory

Magnetic Tapes

Magnetic Disk
(Disk Storage)

Level 3

Optical Disk 7 Level 4

Magnetic Tape

Characteristics of Memory Hierarchy

Characteristics of a Memory Hierarchy can be inferred from the previous figure:

Capacity: It refers to the total volume of data that a system’s memory can store. The capacity
increases moving from the top to the bottom in the Memory Hierarchy.

Access Time: It refers to the time interval present between the request for read/write and the data
availability. The access time increases as we move from the top to the bottom in the Memory

Hierarchy.

Characteristics of a Memory Hierarchy can be inferred from the previous figure:

Performance: When a computer system was designed earlier without the Memory Hierarchy Design,
the gap in speed increased between the given CPU registers and the Main Memory due to a large
difference in the system’s access time. It ultimately resulted in the system’s lower performance, and
thus, enhancement was required. Such a kind of enhancement was introduced in the form of
Memory Hierarchy Design, and because of this, the system’s performance increased. One of the
primary ways to increase the performance of a system is minimizing how much a memory hierarchy
has to be done to manipulate data.

Cost per bit: The cost per bit increases as one moves from the bottom to the top in the Memory

Hierarchy, i.e. External Memory is cheaper than Internal Memory

Limitations of Memory System Performance

42

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Objectives
* Understanding of Limitations of Memory System Performance.
* Memory Latency Example.
Limitations of Memory System Performance
* Memory system, and not processor speed, is often the bottleneck for many applications.
* Memory system performance is largely captured by two parameters, latency and bandwidth.
* Latency: Is the time from the issue of a memory request to the time the data is available at the
processor.
* Bandwidth: Is the rate at which data can be pumped to the processor by the memory system.
* ltis very important to understand the difference between latency and bandwidth.
e Consider the example of a fire-hose. If the water comes out of the hose two seconds after the hydrant is
turned on, the latency of the system is two seconds.
* Once the water starts flowing, if the hydrant delivers water at the rate of 5 gallons/second, the
bandwidth of the system is 5 gallons/second.
* If you want immediate response from the hydrant, it is important to reduce latency.
* If you want to fight big fires, you want high bandwidth.
Memory Latency Example
Consider a processor operating at 1 GHz (1 ns clock) connected to a DRAM with a latency of 100 ns (no caches).
Assume that the processor has two multiply-add units and is capable of executing four instructions in each cycle of 1
ns. The following observations follow:
* The peak processor rating is 4 GFLOPS.
* Since the memory latency is equal to 100 cycles and block size is one word, every time a memory
request is made, the processor must wait 100 cycles before it can process the data.
Improving Effective Memory
Latency Using Caches
Objectives
» Effect of Cache.
» Effect of Cache with Example
Improving Effective Memory Latency Using Caches
* Caches are small and fast memory elements between the processor and DRAM.
* This memory acts as a low-latency high-bandwidth storage.
* If a piece of data is repeatedly used, the effective latency of this memory system can be reduced by the
cache.
* The fraction of data references satisfied by the cache is called the cache hit ratio of the computation on the
system.
* Cache hit ratio achieved by a code on a memory system often determines its performance.

Effect of Cache
43

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* Repeated references to the same data item correspond to temporal locality.
e In our example, we had O(n2) data accesses and O(n3) computation. This asymptotic difference makes the
above example particularly desirable for caches.
¢ Reduce network congestion and improve overall performance.
Effect of Cache Example
Continue the previous example of memory latency, we introduce a cache of size 32 KB with a latency of 1 ns or one
cycle. We use this setup to multiply two matrices A and B of dimensions 32 x 32(8KB or 1K words for each matrix).
We have carefully chosen these numbers so that the cache is large enough to store matrices A and B, as well as the
result matrix C.
* 1GHz processor, 4GFLOPS theoretical peak, 100ns memory Latency.
* Assume 1ns cache latency (full-speed cache)
The following observations can be made about the problem:
* Fetching the two matrices into the cache corresponds to fetching 2K words, which takes
approximately 200 ps.
* Multiplying two n x n matrices takes 2n3 operations. For our problem, this corresponds to 64K
operations, which can be performed in 16K cycles (or 16 us) at four instructions per cycle.
* The total time for the computation is therefore approximately the sum of time for load/store
operations and the time for the computation itself, i.e., 200 + 16 ps.

* This corresponds to a peak computation rate of 64K/216 or 303 MFLOPS.

Effect of Memory Bandwidth
Objectives
* Effect of Memory Bandwidth.
e Effect of Memory Bandwidth Example.
Effect of Memory Bandwidth
* Memory bandwidth is determined by the bandwidth of the memory bus as well as the memory units.
* Memory bandwidth can be improved by increasing the size of memory blocks.
¢ The performance of the CPU or GPU can also impact memory bandwidth.
Effect of Memory Bandwidth Example
Consider the same setup as in previous topic, except in this case, the block size is 4 words instead of 1 word. We
repeat the dot-product computation in this scenario:
* Assuming that the vectors are laid out linearly in memory, eight FLOPs (four multiply-adds) can be
performed in 200 cycles.
* This is because a single memory access fetches four consecutive words in the vector.
* Therefore, two accesses can fetch four elements of each of the vectors. This corresponds to a FLOP
every 25 ns, for a peak speed of 40 MFLOPS.

* ltis important to note that increasing block size does not change latency of the system.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

e Physically, the scenario illustrated here can be viewed as a wide data bus (4 words or 128 bits) connected to
multiple memory banks.

e In practice, such wide buses are expensive to construct.

* In a more practical system, consecutive words are sent on the memory bus on subsequent bus cycles after
the first word is retrieved.

* The above examples clearly illustrate how increased bandwidth results in higher peak computation rates

* The data layouts were assumed to be such that consecutive data words in memory were used by successive
instructions (spatial locality of reference).

* If we take a data-layout centric view, computations must be reordered to enhance spatial locality of

reference.

Week 7

Interconnection Networks
Objectives
* Introduction of Interconnection Networks
* Introduction of Static Network
¢ Introduction of Dynamic Network
Interconnection Networks:
“Interconnection networks provide mechanisms for data transfer between processing nodes or between processors
and memory modules.”
Interconnects are made of switches and links.
Provide efficient, correct, robust message passing between two separate nodes.
* Local area network (LAN) — connects nodes in single building, fast & reliable.
* Media: twisted-pair, coax, fiber
* Bandwidth: 10-100MB/s
* Wide area network (WAN) — connects nodes across large geographic area.
* Media: fiber, microwave links, satellite channels
* Bandwidth: 1.544MB/s (T1), 45 MB/s (T3)
Interconnection networks are classified into two categories:
* Static network
* Dynamic network
Interconnection Networks: Static Network
» Static networks consist of point-to-point communication links among processing nodes and are also referred
to as direct networks.

* Direct fixed links are established among nodes to form a fixed network.

45

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Interconnection Networks: Dynamic Network
e Dynamic networks are built using switches and communication links. Dynamic networks are also referred to
as indirect networks.
e Connections are established when needed
¢ Communication links are connected to one another dynamically by the switches to establish paths among

processing nodes and memory banks.
Static network Indirect network

OY O

y
Network interface/switch \ f Switching element
Processing node

Classification of interconnection networks: (a) a static network; and (b) a dynamic network.
Control Strategy
¢ Objectives Understanding of Control Strategies.
e Centralized Strategy.
¢ Decentralized Strategy
Control Strategy
* Depending on where the decisions are made as well as on the number of measurements that are utilized to
make the control decisions, these control strategies are classified into two categories:
* Centralized
* Decentralized
Control Strategy: Centralized
¢ One central control unit is used to control the operations of the components of the system
* Non autonomous components.
¢ Usually homogeneous technology
¢ Multiple users share the same resources at all time
¢ Single point of control

¢ Single point of failure

46

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Control Strategy: Decentralized

Set of tightly coupled programs executing on one or more computers which are interconnected through a
network and coordinating their actions.

The control function is distributed among different components in the system.

Autonomous components

Mostly build using heterogeneous technology

System components may be used exclusively

Concurrent processes can execute

Multiple point of failure

Switching Techniques

Objectives

Understanding of Switching Techniques.

Types of Switching Techniques

Switching Techniques

“Switching is process to forward packets coming in from one port to a port leading towards the destination.”

Switches map a fixed number of inputs to outputs.
The total number of ports on a switch is the degree of the switch.
Switches may also provide support for internal buffering, routing and multicast
The cost of a switch grows as the square of the degree of the switch, the peripheral hardware linearly as the
degree, and the packaging costs linearly as the number of pins.
Nodes may connect to other nodes only, or to stations and other nodes.
End devices are stations:
* Computer, terminal, phone, etc.
Two different switching technologies are:
* Circuit switching

* Packet switching

Switching Techniques: Circuit switching

A complete path has to be established prior to the start of communication between a source and a
destination.
Dedicated communication path between two stations.
Must have switching capacity and channel capacity to establish connection
Must have intelligence to work out routing
Three phases are:
* Establish
* Transfer

* Disconnect

Switching Techniques: Packet switching

47

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Communication between a source and a destination takes place via messages divided into smaller entities,
called packets.
Data transmitted in small packets.
* Typically, 1000 octets.
* Longer messages split into series of packets.
* Each packet contains a portion of user data plus some control information
Control info
* Routing (addressing) information
Packets are received, stored briefly (buffered) and past on to the next node.

* Store and forward

Network Topologies

Objectives

Introduction of Network Topologies

Types of Network Topologies

Network Topologies:

“A network topology is the physical and logical arrangement of nodes and connections in a network. Describes how

to connect processors and memories to other processors and memories”

A variety of network topologies have been proposed and implemented.
These topologies tradeoff performance for cost
Commercial machines often implement hybrids of multiple topologies for reasons of packaging, cost, and
available components
Connection of nodes impacts
* Maximum & average communication time
* Fault tolerance
* Expense
Two basic types of topologies are:
» Static topology.
* Dynamic topology.
Static Connection Networks:
* Ring (Loop) networks
* Mesh
* Torus
* Tree networks
* Hypercube network
Dynamic Connection Networks
* Bus-based

e Switch-based

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

48

Network Properties
¢ Diameter: The diameter of a network with n nodes is the length of the maximum shortest path between any
two nodes in the network.
¢ Degree of a node: The number of connections for that node.
* Latency: Total time to send a message
* Bandwidth: Number of bits transmitted in a unit of time.
* Bisection: The number of connections that need to be cut to partition the network in 2
Static Topologies: Star
Objectives
* Introduction Star Topology
e Properties of Star Topology
Static Topologies: Star
“All devices are connected to a central switch, which makes it easy to add new nodes without rebooting all currently
connected devices. Logical: master-slave model.”
* Every node is connected only to a common node at the center.
* Distance between any pair of nodes is O(1). However, the central node becomes a bottleneck.
* Inthis sense, star connected networks are static counterparts of buses.

Inexpensive — sometimes used for LANs

A star connected network of nine nodes.
Static Topologies: Mesh
Objectives

¢ Introduction of Mesh Topology.

* Properties of Mesh Topology.
49

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Static Topologies: Mesh
“Each node is connected to every other mode with a direct link. This topology creates a very reliable network but
requires a large amount of cable and is difficult to administer.”
* Two-dimensional mesh is an extension of the linear array to two dimensions.
* Inalinear array, each node has two neighbors, one to its left and one to its right. If the nodes at either end
are connected, we refer to it as a 1-D torus or a ring.
* A 2-D mesh has the property that it can be laid out in 2-D space, making

* It attractive from a wiring standpoint.

A AN AN AN
()

re!
O
O
&

)
N
)
N
)
N
)
N
L
)
L
e
L
e
N
-

()
N
()
N
()
(N
()
N

eI
_/
N\
\/
/)
__/
N
)
J

N
J
R
J
N
J
N
_J
O
Q
N
[
N
¢
—/

(a) (b) (©)

Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh with wraparound link (2-D
torus); and (c) a 3-D mesh with no wraparound.
Static Topologies: Hypercube
Objectives
¢ Introduction of Hypercube Topology.
e Properties of Hypercube Topology
Static Topologies: Hypercube

“Hypercube (or Binary n-cube multiprocessor) structure represents a loosely coupled system made up of N=2n

processors interconnected in an n-dimensional binary cube.”
* Aspecial case of a d-dimensional mesh is a hypercube. Here, d = log p, where p is the total number of nodes.
* The distance between any two nodes is at most log p
* Each node has log p neighbors
* The distance between two nodes is given by the number of bit positions at which the two nodes differ
» Each node is assigned a binary address in such a manner, that the addresses of two neighbors differ in exactly

one bit position.

50

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

@1 1@——@3 5@
@0 ./
19 @3
@0 t0——@:2 | 4@
Dot Line Square (o] | /— @2
O-cube 1-cube 2-cube Cube
Uniprocessor twin proc. quad proc. J-cube
(K s '
Hypercubes | |
P
Tesseract &4-node hypercube
binary 4-cube binary 6-cube

Construction of hypercubes from hypercubes of lower dimension.

Hypercube structures for n = 1,2,3.

011
0 0l 11 010 110
001
1 00 10 000 100
One-cube Two-cube Three-cube

Construction of hypercubes from hypercubes of lower dimension
Static Topologies: Tree
Objectives

* Introduction of Tree Topology

e Types of Tree Topology.

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

101

51

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Static Topologies: Tree

“A tree network is one in which there is only one path between any pair of nodes.”

A A N ANA

The distance between any two nodes is no more than 2/ogp.

Links higher up the tree potentially carry more traffic than those at the lower levels

For this reason, a variant called a fat-tree, fattens the links as we go up the tree

Both linear arrays and star-connected networks are special cases of tree networks

Trees can be laid out in 2D with no wire crossings. This is an attractive property of trees

To route a message in a tree, the source node sends the message up the tree until it reaches the node at the

root of the smallest subtree containing both the source and destination nodes.

O Processing nodes

Switching nodes

o oo O O 00 O

(a) (b)

Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree network.

Static Topologies: Fat Tree

A fat tree network of 16 processing nodes

Dynamic Topologies: Buses

52

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Objectives

Introduction of Bus Topology

Introduction of Distributed Memory.

Dynamic Topologies: Bus

“Bus topology, also known as line topology, is a type of network topology in which all devices in the network are

connected by one central network cable. The single cable, where all data is transmitted between devices, is referred

to as the bus, backbone, or trunk.”

Some of the simplest and earliest parallel machines used buses. All processors access a common bus for

exchanging data.

A bus has the desirable property that the cost of the network scales linearly as the number of nodes, p. This

cost is typically associated with bus interfaces.

The distance between any two nodes is O(1) in a bus. The bus also provides a convenient broadcast media.
However, the bandwidth of the shared bus is a major bottleneck.

Typical bus based machines are limited to dozens of nodes. Sun Enterprise servers and Intel Pentium based

shared-bus multiprocessors are examples of such architectures.

Address i

Data

Shared Memory

Processor () Processor |

Bus-based interconnects with no local caches.

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

53

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

-

Address

Shared Memory

. Data
I I e m I o
Cache / Cache / - -
Itm.':tl Ml:mur}r Local Mc_ttmr}- _

\ q9 B 9 C

Processor |

Processor (0 ‘

Bus-based interconnects with local memory/caches.

Dynamic Topologies: Bus Cont...
Objectives
¢ Understanding of Single Bus System.

¢ Understanding of Multi-Bus System.

Dynamic Topologies: Bus
e Bus-based dynamic topologies are broadly classified into two categories:
¢ Sigle bus
e Multi bus
Dynamic Topologies: Sigle BUS
* Simplest way to connect multiprocessor systems.
* The use of local caches reduces the processor memory traffic.
* Size of such system varies between 2 and 50 processors.
* Single bus multiprocessors are inherently limited by:
* Bandwidth of bus.
* 1 processor can access the bus.

* 1 memory access can take place at any given time.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

54

Single Bus

M2 /0

Dynamic Topologies: Multi Bus

Several parallel buses to interconnect multiple processors and multiple memory modules.
* Many connection schemes are possible:
* Multiple Bus with Full Bus — Memory Connection (MBFBMC).
* Multiple Bus with Single Bus — Memory Connection (MBSBMC).
* Multiple Bus with Partial Bus — Memory Connection (MBPBMC).
* Multiple Bus with Class-based Bus — Memory Connection (MBCBM(C).
Multiple Bus with Full Bus — Memory Connection (MBFBMC)

mmI JmI JumI MULI MULI JHHLI

‘ [
A & A r \ =
- A A ¥ Y Y \J -
il A A A A "
< A 4 A4 h 4 y A h 4 »
il A A A A =
L. ¥ A 4 h 4 ¥ >
l A A A A
rvyy IYYY YYYY YYYY
M, M, M, M,

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

55

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Multiple Bus with Single Bus — Memory Connection (MBSBMC)

P, P, P, P, P, P,
JLJLAI JLAI JHLAI JLAJLI JLAJLI nuLI
> — ' ' ' ' ' >
< A 4 4 v) 4 ¥ A 4 .
- A A A 4 Y h 4 Y Y -
. 4 v v i 4 \ 4 y g
< A
v ¥ L v
M, M, M, M,
Multiple Bus with Partial Bus — Memory Connection (MBPBMC)
P, P, P, P, P, P,
JuuhI JLAI JuuhI .MULI .MULI .MLJLI
< X 7 >
™ A 4 Y Y Y Y Y -
< Y Y Y Y Y A A >
YV vy v Y v YV
M, M, M, M,
Multiple Bus with Class-based Bus — Memory Connection (MBCBMC).
56

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

munI JUnI munI JU;TI JU;TJL MHLI
y

A A A A
Ll
il
Ll
il
yvYyYYVyYyy

Class 1 Class 2 Class 3

Dynamic Topologies: Switch Based Networks

Objectives

Understanding of Single-Staged Switch.
Understanding of Multi-Staged Switch.

Switch-based Dynamic Topologies: Sigle-Stage Switch.

A single stage of SE exists between the inputs and outputs of the network. Possible settings of a 2x2 SE are:

> B

Straight Exchange Upper-broadcast Lower-broadcast

Switch-based Dynamic Topologies: Multi-Stage Switch

Crossbars have excellent performance scalability but poor cost scalability.

Buses have excellent cost scalability, but poor performance scalability.

Multistage interconnects strike a compromise between these extremes.

A Multistage switch network consists of a number of stages each consisting of a set of 2x2 SEs.

Stages are connected to each other using Inter-Stage Connection (ISC) pattern.

In MINs the routing of a message from a given source to a given destination is based on the destination

address (self-routing).

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

57

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Processors Multistage interconnection network Memory banks

Stage | _ Stage 2 . Stage n

The schematic of a typical multistage interconnection network
* One of the most commonly used multistage interconnects is the Omega network.
e This network consists of log p stages, where p is the number of inputs/outputs.
* Ateach stage, inputiis connected to output j

. 2i, 0<i<p/2-1

. if_?‘{%—l—p, pl2<i<p—1

Each stage of the Omega network implements a perfect shuffle as follows:

58

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

000

001

010

011

100

101

110

0

v

0

L

-~

000 = left_rotate((XX))

001 = left_rotate(1(X)

010 = left_rotate(001)

011 = left_rotate(101)

100 = left rotate(O10)

101 = left_rotate(110)

11O = left_rotate(O1 1)

111 = left_rotate(111)

A perfect shuffle interconnection for eight inputs and outputs.

Dynamic Topologies: Cross Bar

Objectives

Understanding of Cross Bar Topology

Architecture of Cross Bar Topology.

Dynamic Topologies: Cross Bar

A simple way to connect p processors to b memory banks is to use a crossbar network.

A crossbar network uses an pxm grid of switches to connect p inputs to m outputs in a non-blocking manner.

The cost of a crossbar of p processors grows as O(p?).

This is generally difficult to scale for large values of p.

Provide simultaneous connections among all its inputs and all its outputs.

A Switching Element (SE) is at the intersection of any 2 lines extended horizontally or vertically inside the
switch.

It is a non-blocking network allowing multiple input output connection pattern to be achieved
simultaneously

Examples of machines that employ crossbars include the Sun Ultra HPC 10000 and the Fujitsu VPP500

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

59

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Memory Banks

0 2 i 4 5 b-1

A switching
| element

Processing Elements

A completely non-blocking crossbar network connecting p processors to b memory banks.
Analysis and Performance Metrics
Objectives
e Evaluating of Static Interconnection Networks
e Evaluating of Dynamic Interconnection Networks
Evaluating Interconnection Networks
e Diameter: The distance between the farthest two nodes in the network. The diameter of a linear array is p -
1, that of amesh is 2(- 1), that of a tree and hypercube is log p, and that of a completely connected
network is O(1).
e Bisection Width: The minimum number of wires you must cut to divide the network into two equal parts.
The bisection width of a linear array and tree is 1, that of amesh is , that of a hypercube is p/2 and that of
a completely connected network is p?/4.
e Cost: The number of links or switches (whichever is asymptotically higher) is a meaningful measure of the
cost. However, a number of other factors, such as the ability to layout the network, the length of wires, etc.,
also factor into the cost

Analysis and Performance Metrics: Static Networks

60

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

. Bisection | Arc Cost
e Lhess Width Connectivity | (No. of links)
Linear array p—1 1 1 p—1
2-D mesh, no wraparound | 2(,/p — 1) N/ 2 2(p — /D)
2-D wraparound mesh 2|/2/2] 2,/D 4 2p
Hypercube log p p/2 logp | (plogp)/2
Analysis and Performance Metrics: Dynamics Networks
_ Bisection Arc Cost
Network Diameter Width Connectivity | (No. of links)
Crosshar 1 p .l pz
Omega Network lo gp P / 2 2 P / 2
Dynamic Tree 2 lGE’;P 1 p— 1

Week 8

What is replication of data?
Objectives
e Concept of Replication of Data
e Replication as Scaling Technique

What is replication of data?

“Data replication is the process by which data residing on a physical/virtual servers or cloud instance is continuously

replicated or copied to a secondary server(s) or cloud instance. Organizations replicate data to support high

availability, backup, or disaster recovery.”
Reasons for Replication
e Data are replicated to increase the reliability of a system.
¢ Replication for performance:
* Scaling in numbers.

* Scaling in geographical area.

¢ Replicas allows remote sites to continue working in the event of local failures

e ltis also possible to protect against data corruption.

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

61

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e Replicas allow data to reside close to where it is used.
Replication as Scaling Technique
Replication and caching for performance are widely applied as scaling techniques
Replicating the data and moving it closer to where it is needed helps to solve the scalability problem
When systems scale:
* The first problems to surface are those associated with performance as the systems get bigger, they
get often slower.
* Another problem is how to efficiently synchronize all of the replicas created to solve the scalability
issue?
Replication and Consistency
Objectives
¢ Understanding of Replication and Consistency.
* Data Consistency Models
Replication and Consistency
e Adding replicas improves scalability but provoke the overhead of keeping the replicas up-to-date. The
solution often results in a relaxation of any consistency constraints.
e If there are many replicas of the same thing, it is not easy to keep all those replicas consistent. Two principal
keys are:
* How do we keep all of them up-to-date?
* How do we keep the replicas consistent?
Replication and Consistency: Data Consistency Models
Consistency can be achieved in a number of ways. We will study a number of consistency models, as well as protocols
for implementing the models
The consistency models are classified into two broader categories
» Data-centric Consistency Models
* Client-Centric Consistency Models
Data Consistency Models
¢ Data-centric Consistency Models
* Continuous Consistency
* Consistent Ordering of Operations
* Causal Consistency
* Grouping Operations
* Client-Centric Consistency Models
* Eventual Consistency
* Monotonic Writes
* Read Your Writes

* Writes Follow Reads
62

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Data-Centric Consistency Models: Continuous Consistency
Objectives
¢ Understanding of Data-Centric Consistency Models.
¢ Understanding of Continuous Consistency
¢ Understanding of Conit with example

Data Consistency Model

“A contract between processes and the data store that says that if processes agree to obey certain rules, the store

promises to work correctly.”

Data-Centric Consistency Models
* Adata-store can be read from or written to by any process in a distributed system.
* Alocal copy of the data-store (replica) can support “fast reads”.

* A write to a local replica needs to be propagated to all remote replicas.

Process Process Process

Distributed data store

The general organization of a logical data store, physically distributed and replicated across multiple processes.
Data-Centric Consistency Models: Continuous Consistency
Degree of consistency: Yu and Vahdat (2002) take a general approach by distinguishing three independent axes for
defining inconsistencies:
* Replicas may differ in their numerical value.
* Replicas may differ in their relative staleness.
* There may differences with respect to order of performed update operations.
* A conit specifies the unit over which consistency is to be measured.
* Example: numerical and ordering deviations.
contains the variables x and y:
* Each replica maintains a vector clock
* B sends A operation [h5,Bi: x := x + 2];

* A has made this operation permanent (cannot be rolled back)

63

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* Ahas three pending operations; order deviation = 3

* A has missed one operation from B, yielding a max diff of 5 units) (1,5)

Replica A Replica B
Cont ... Gl
E x=6,y=3 . E x=2,y=5 .
Operation Result Operation Result
l<5B>|x=x+2| [x=2] [<5.8>] xi=x+2| [x=2]
[-: 3,A>l‘y:=y+2| [y=2] |¢:10.B>|y:=y+5| [y=5]
J<12,A>|y:=y+1 l [y=3]
[<14.8>] x:=y*2 | [x=8]

Vector clock A = (15, 5) Vector clock B =(0, 11)
Order deviation =3 Order deviation x2
Numerical deviation = (1, 5) _ Numerical deviation = (3, 6)

An example of keeping track of consistency deviations [adapted from (Yu and Vahdat, 2002)].
Data-Centric Consistency Models: Sequential Consistency
Objectives
¢ Introduction of Sequential Consistency.
e Example of Sequential Consistency.
Data-Centric Consistency Models: Sequential Consistency
“The result of any execution is the same as if the (read and write) operations by all processes on the data-store

were executed in the same sequential order and the operations of each individual process appear in this sequence in

the order specified by its program.”
* A weaker consistency model, which represents a relaxation of the rules.
* Itis also must easier to implement.
* Example: Time independent process. Four processes operating on the same data item x.
* Process P1 first performs W(x)a to x.
* Later (in absolute time), process P2 performs a write operation, by setting the value of x to b.
* Both P3 and P4 first read value b, and later value a.

* Write operation of process P2 appears to have taken place before that of P1.

64

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

(a) A sequentially consistent data store.

Example: Time independent process. Four processes operating on the same data item x.
* Violates sequential consistency - not all processes see the same interleaving of write operations.
* To process P3, it appears as if the data item has first been changed to b, and later to a.

* But, P4 will conclude that the final value is b.

P1. W(x)a

P2: W(x)b

3 R(x)b R(x)a
P4. R(x)a R(x)b

(b) A data store that is not sequentially consistent
Data-Centric Consistency Models: Causal Consistency
Objectives
e Introduction of Casual Consistency.
e Example of Casual Consistency.
Data-Centric Consistency Models: Causal Consistency
For a data store to be considered causally consistent, it is necessary that the store obeys the following

condition:

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

65

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* Writes that are potentially causally related must be seen by all processes in the same order.

* Concurrent writes may be seen in a different order on different machines

Causal Consistency Example

Interaction through a distributed shared database.
Process P1 writes data item x.
Then P2 reads x and writes y.
Reading of x and writing of y are potentially causally related because the computation of y may have
depended on the value of x as read by P2 (i.e., the value written by P1).
Conversely, if two processes spontaneously and simultaneously write two different data items, these are not
causally related.
Operations that are not causally related are said to be concurrent.
For a data store to be considered causally consistent, it is necessary that the store obeys the following
condition:
* Writes that are potentially causally related must be seen by all processes in the same order.

* Concurrent writes may be seen in a different order on different machines.

Example 1: This sequence is allowed with a causally-consistent store, but not with a sequentially consistent store.

D1 W(xja Wix)c

P2

: R(x)a ~ W(x)b

P3

) R(x)a R(x)c R(x)b

P4

: R(x)a R(x)o R(x)c

Example 2:

W2(x)b potentially depending on W1(x)a because b may result from a computation involving the value read
by R2(x)a.
The two writes are causally related, so all processes must see them in the same order.

It is incorrect.

66

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

P1: W(x)a

P2: R(x)a W(x)b

P3: R(x)b R(x)a

P4: R(x)a R(x)b

(@)

(a) A violation of a causally-consistent store.

Example 2:

* Read has been removed, so W1(x)a and W2(x)b are now concurrent writes.

* A causally-consistent store does not require concurrent writes to be globally ordered,

* Itiscorrect.

Note: situation that would not be acceptable for a sequentially consistent store.

P1: W(x)a

P2: W(x)b

P3: R(x)b

P4. R(x)a

(a) A violation of a causally-consistent store.

Client-Centric Consistency Models: Eventual Consistency
Objectives
¢ Understanding of Client-Centric Consistency Models
¢ Understanding of Eventual Consistency.

Client-Centric Consistency Models

“A special class of distributed data-store which is characterized by the lack of simultaneous updates. Here, the

emphasis is more on maintaining a consistent view of things for the individual client process that is currently

operating on the data-store."

Client-centric consistency models are described using the following notations

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

X: data item

Xi: ith version of x

WS xi[t] is the set of write operations at Li that lead to version xi of x (at time t);

If operations in WS xi[t1] have also been performed at local copy Lj at a later time t2, we write WS
(xi[ta], xj[t2]).

If the ordering of operations or the timing is clear from the context, the time index will be omitted.

Client-Centric Consistency Models: Eventual Consistency

“The eventual consistency model states that, when no updates occur for a long period of time, eventually all updates

will propagate through the system and all the replicas will be consistent.”

* Client-centric consistency models originate from the work on Bayou

e Bayou is a database system developed for mobile computing, where it is assumed that network connectivity

is unreliable and subject to various performance problems.

¢ Wireless networks and networks that span large areas, such as the Internet, fall into this category.

e Eventual consistency essentially requires only updates are guaranteed to propagate to all replicas.

Eventual Consistency Example

Example: Consistency for Mobile Users

Consider a distributed database to which you have access through your notebook.
Assume your notebook acts as a front end to the database.
At location A you access the database doing reads and updates.
At location B you continue your work, but unless you access the same server as the one at location A,
you may detect inconsistencies:
* Your updates at A may not have yet been propagated to B
* You may be reading newer entries than the ones available at A

* Your updates at B may eventually conflict with those at A

68

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Client moves to other location
and (transparently) connects to
other replica

D

i S e e ! e S N

Replicas need to maintain
client-centric consistency

Wide-area network

e e e e

Distributed and replicated database

/ Read and write operations
Portable computer

The principle of a mobile user accessing different replicas of a distributed database.

Client-Centric Consistency Models: Monotonic Reads
Objectives
* Understanding of Monotonic Reads.
* Monotonic Reads Example.
Client-Centric Consistency Models: Monotonic Reads
* If a process reads the value of a data item x, any successive read operation on x by that process will always
return that same or a more recent value.
¢ Monotonic-read consistency guarantees that if a process has seen a value of x at time t, it will never see an
older version of x at a later time.
Monotonic Reads Example
Automatically reading your personal calendar updates from different servers. Monotonic Reads guarantees
that the user sees all updates, no matter from which server the automatic reading takes place.
Reading (not modifying) incoming mail while you are on the move. Each time you connect to a different e-
mail server, that server fetches (at least) all the updates from the server you previously visited
e Example: The read operations performed by a single process P at two different local copies of the

same data store.

69

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e \Vertical axis - two different local copies of the data store are shown - L1 and L2.

e Time is shown along the horizontal axis.

e QOperations carried out by a single process P in boldface are connected by a dashed line representing

the order in which they are carried out.
e Process P first performs a read operation on x at L1, returning the value of x1 (at that time).
e This value results from the write operations in WS (x1) performed at L1.

e Later, P performs a read operation on x at L2, shown as R (x2).

e To guarantee monotonic-read consistency, all operations in WS (x1) should have been propagated to

L2 before the second read operation takes place.

L1: WS(x/) R(x4)-.

1

L2: WS(X 1:X) ~- R(X»)

(@)

(a) A monotonic-read consistent data store.
e Situation in which monotonic-read consistency is not guaranteed.
e After process P has read x1 at L1, it later performs the operation R (x2) at L2 .
e But, only the write operations in WS (x2) have been performed at L2 .

* No guarantees are given that this set also contains all operations contained in WS (x1).

L1: WS(x4) R(x1)-\\

A

L2: WS(x,) - R(x,)

(b)

(b) A data store that does not provide monotonic reads

Client-Centric Consistency Models: Monotonic Writes
Objectives

¢ Understanding of Monotonic Writes

¢ Monotonic Writes Example.

Client-Centric Consistency Models: Monotonic Writes

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

70

e A write operation by a process on a data item x is completed before any successive write operation on X by
the same process.

e A write operation on a copy of item x is performed only if that copy has been brought up to date by means of
any preceding write operation, which may have taken place on other copies of x. If need be, the new write
must wait for old ones to finish.

Monotonic Writes Example
* Updating
* Updating a program at server S2, and ensuring that all components on which compilation and linking
depends, are also placed at S2.
* Maintaining
* Maintaining versions of replicated files in the correct order everywhere (propagate the previous

version to the server where the newest version is installed).

e Process P performs a write operation on x at local copy L1, presented as the operation W(x1).
e Later, P performs another write operation on x, but this time at L2, shown as W (x2).
¢ To ensure monotonic-write consistency, the previous write operation at L1 must have been propagated to L2.

e This explains operation W (x1) at L2, and why it takes place before W (x2).

(a) A monotonic-write consistent data store.
* Situation in which monotonic-write consistency is not guaranteed.
e Missing is the propagation of W(x1) to copy L2.
* No guarantees can be given that the copy of x on which the second write is being performed has the same or

more recent value at the time W(x1) completed at L1.

71

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

(b) A data store that does not provide monotonic-write consistency.

Client-Centric Consistency Models: Read Your Writes
Objectives
* Understanding of Read Your Writes.
* Read Your Writes Example
"Client-Centric Consistency Models: Read Your Writes
* The effect of a write operation by a process on data item x will always be seen by a successive read operation
on x by the same process.
* A write operation is always completed before a successive read operation by the same process, no matter
where that read operation takes place.
e Example: Updating your Web page and guaranteeing that your Web browser shows the newest version
instead of its cached copy.
Read Your Writes Example
* Process P performed a write operation W(x1) and later a read operation at a different local copy.

* Read-your-writes consistency guarantees that the effects of the write operation can be seen by the

succeeding read operation.

e This is expressed by WS (x1;x2), which states that W (x1) is part of WS (x2).

72

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

(a) A data store that provides read-your-writes consistency.
* W (x1) has been left out of WS (x2), meaning that the effects of the previous write operation by process P

have not been propagated to L2.

(b) A data store that does not.
Client-Centric Consistency Models: Writes Follow Reads
Objectives
* Understanding Writes Follow Reads Model.
¢ Example of Writes Follow Reads Model.
Client-Centric Consistency Models: Writes Follow Reads
e A write operation by a process on a data item x following a previous read operation on x by the same process
is guaranteed to take place on the same or a more recent value of x that was read.
e Any successive write operation by a process on a data item x will be performed on a copy of x that is up to
date with the value most recently read by that process
e Example: See reactions to posted articles only if you have the original posting (a read .pulls in. the
corresponding write operation).
Writes Follow Reads Example

* A process reads x at local copy L1.

73

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* The write operations that led to the value just read, also appear in the write set at L2, where the same
process later performs a write operation.

* (Note that other processes at L2 see those write operations as well.)

L1: WS(x/) R(X4)-+,

i

L2: WS(X ;X ») S~ W(X,)

(a)

(a) A writes-follow-reads consistent data store

* No guarantees are given that the operation performed at L2,

* They are performed on a copy that is consistent with the one just read at L1.

L1: WS(x+) R(X4)-

| 5 WS(x) ~- W(xX,)

(b)

(b) A data store that does not provide writes-follow-reads consistency.

Week 9

Introduction to GPU

Objectives

¢ Introduction of GPU

e Applications of GPU

Introduction to GPU
“Graphics Processing Unit (GPU) is a chip or electronic circuit capable of rendering graphics for display on an
electronic device. GPUs work by using a method called parallel processing, where multiple processors handle

separate parts of the same task."

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

74

e The world’s first GPU, the GeForce 256, was marketed by NVIDIA in 1999. These GPU chips can process a
minimum of 10 million polygons per second and are used in nearly every computer on the market today.

e Traditional CPUs are structured with only a few cores. However, modern GPU chip can be built with hundreds
of processing cores. GPU parallelism is similar to multicore parallelism.

* GPUs have a throughput architecture that exploits massive parallelism by executing many concurrent threads
slowly, instead of executing a single long thread in a conventional microprocessor very quickly.

* GPUs have evolved to the point where many real-world applications are easily implemented on them and run
significantly faster than on multi-core systems. Future computing architectures will be hybrid systems with

parallel-core GPUs working in tandem with multi-core CPUs

GPU Threads

R

GPU | >

Thread /py over PCle y\/ over PCle

CPU | >

NVIDIA CUDA (Compute Uniform Device Architecture) — 2007
A way to run custom programs on the massively parallel architecture.
GPU vs. CPU
* GPU is designed for highly parallel operations while a CPU execute the programs serially.
¢ GPUs have many parallel executing units while CPUs has a few execution units.
e GPUs have significantly faster and more advance memory interfaces as they need to shift around a lot more
data than CPUs
¢ GPUs have much deeper pipelines several thousand stages vs 10 to 20 for CPUs
Applications of GPU
e Many applications have been developed to use GPUs for supercomputing in various fields:
* Scientific Computing
* CFD, Molecular Dynamics, Physical modeling, computational engineering, Genome
Sequencing, Mechanical Simulation, Quantum Electrodynamics, Game effects (FX) physics.
* Image Processing
* Registration, interpolation, feature detection, recognition, filtering.
* Data Analysis

* Databases, matrix algebra, sorting and searching, data mining.
75

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Architecture of GPU
Objective
e Understanding of Architecture of GPU.
e CUDA NVIDIA’s General Purpose Parallel Computing Architecture.
Architecture of GPU
* Parallel Coprocessor to conventional CPUs
* Implement a SIMD structure, multiple threads running the same code.
* Grid of Blocks of Threads
* Thread local registers
* Block local memory and control
¢ Global memory
* The CPU is the conventional multicore processor with limited parallelism to exploit.
* The GPU has a many-core architecture that has hundreds of simple processing cores organized as
multiprocessors. Each core can have one or more threads.
* Essentially, the CPU’s floating-point kernel computation role is largely offloaded to the many-core GPU. The

CPU instructs the GPU to perform massive data processing.

* Scale code to hundreds of cores running thousands of threads.

* The task runs on the GPU independently from the CPU.

GPU

Multiprocessor 1 Multiprocessor N '
Pyl [P - P, Pii|Pa|- [Py ' CPU

The use of a GPU along with a CPU for massively parallel execution in hundreds or thousands of processing cores.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional Storage Hierarchy

(Device) Grid

Block (0, 0) Block (1, 0)

|

|

Thread (0, 0) | Thread (1, 0)| | Thread (0, 0) | Thread (1, 0)

Host

* Blocks map to cores on the GPU.

This document is available on ﬁ stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

77

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* Allows for portability when changing hardware.

Multithreaded CUDA Program

h 4 h 4
GPU with 2 Cores GPU with 4 Cores

Core 1 Core 0 Core 1 Core 2 Core 3

EEEE:
:

CUDA is NVIDIA’s general purpose parallel computing architecture .

e 8-series GPUs deliver 25 to 200+ GFLOPS on compiled parallel C applications
* Available in laptops, desktops, and clusters.

* GPU parallelism is doubling every year.

* Programming model scales transparently.

* Programmable in C with CUDA tools.

* Multithreaded SPMD model uses application data parallelism and thread parallelism.
GPU Programming Models
Objectives

¢ Understanding of GPU Programming Models

* GPU Accelerated Libraries
GPU Programming Models
“GPU Programming is a method of running highly parallel general-purpose computations on GPU accelerators. While
the past GPUs were designed exclusively for computer graphics, today they are being used extensively for general-
purpose computing (GPGPU computing) as well.”
GPU Programming Models: CUDA

CUDA is NVIDIA’s general purpose parallel computing architecture .

78

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

* Designed for calculation-intensive computation on GPU hardware.

CUDA is not a language, it is an API

GPU Computing Applications

DirectX
Compute

Java and
FORTRAN Python

OpenCL"

NVIDIA GPU
with the CUDA Parallel Computing Architecture

GPU Programming Models: CUDA
* General purpose programming model:
* User kicks off batches of threads on the GPU.
* GPU = dedicated super-threaded, massively data parallel co-processor.
* CUDA compute device:
* Isacoprocessor to the CPU or host
* Has its own DRAM (device memory)
* Runs many threads in parallel
* Istypically a GPU but can also be another type of parallel processing device
GPU Programming Models: CUDA
Figure shows the architecture of the Fermi GPU, a next-generation GPU from NVIDIA. This is a streaming
multiprocessor (SM) module. Multiple SMs can be built on a single GPU chip. The Fermi chip has 16 SMs
implemented with 3 billion transistors. Each SM comprises up to 512 streaming processors (SPs), known as CUDA

cores. The Tesla GPUs used in the Tianhe-1a have a similar architecture, with 448 CUDA cores.

79

This document is available on ﬁ stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

NVIDIA Fermi GPU built with 16 streaming multiprocessors (SMs) of 32 CUDA cores each; only one SM Is shown.

GPU Accelerated Libraries

NVIDIA cuRAND NVIDIA NPP

\

++ STL

Algebra Feature for NVIDIA cuFFT

Power Efficiency of GPU
Objectives

¢ Performance of GPU

80

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

* Power Efficiency of GPU

Performance of GPU

Bill Dally of Stanford University considers power and massive parallelism as the major benefits of GPUs over CPUs for

the future. Two Aspects:

* Data Access Rate Capability

* Bandwidth

* Data Processing Capability

* How

many ops per sec

Performance of GPU: Data Access Capability

¢ High-End CPU Today

* 31.92 GB/sec (nehalem) -12.8 GB/sec (hapertown)

e Bus width 64-bit

* GPU/GTX280

e 141.7 GB/sec

e Bus width 512-bit

e 4.39x-11x
e GFLOPS

* Billion Floating-Point Operations per Second

* Caveat: FOPs can be different

* But today things are not as bad as before

* High-End CPU today

* 3.4Ghz x 8 FOPS/cycle = 27 GFLOPS

e Assumes SSE

* High-End GPU today

/ GTX280

* 933.1 GFLOPS or 34x capability

Power Efficiency of GPU: GPU vs. CPU

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

81

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

GT200

1000
NVIDIA GPU]
s Ultra f
< G80 P
a .
& .
i 500
O
X GT71
o
a
G70
250 NV40 3.2 GHz
Nv35 : 3.0 GHz Harpertown
NV30 PERE Core2 Duo @&
o @@ 8- -& ® .
Jan Jun Apr Jun Mar Nov May Jun
2003 2004 2005 2006 2007 2008
GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra
G92 = GeForce 9800 GTX G70 = GeForce 7800 GTX NV30 = GeForce FX 5800

G80 = GeForce 8800 GTX

NV40 = GeForce 6800 Ultra

Power Efficiency of GPU: GPU vs. CPU

100
~ o
5 10 -
— L R
=
a
& e B
5 1
il — GPU
— CPU
EF
0.1
2010 2013 2016

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

82

The GPU performance (middle line, measured 5 Gflops/W/core in 2011), compared with the lower CPU performance
(lower line measured 0.8 Gflops/W/core in 2011) and the estimated 60 Gflops/W/core performance in 2011 for the

Exascale (EF in upper curve) in the future.

What is Heterogeneity?
Objectives
» Definition of Heterogeneity.
* Heterogeneity and Mobile Code
What is Heterogeneity?
“Heterogeneity in distributed computing refers to the presence of diverse types of hardware, software, and
networking technologies in a distributed system. The Internet enables users to access services and run applications
over a heterogeneous collection of computers and networks.”
Heterogeneity (mobile code and mobile agent)
* Networks
* Hardware
* Operating systems and middleware
* Program languages
It calls for integration of components written using different programming languages, running on different operating
systems, executing on different hardware platforms. In a distributed system, heterogeneity is almost unavoidable, as
different components may require different implementation technologies.
Heterogeneity and Mobile Code
* The term mobile code is used to refer to program code that can be transferred from one computer to
another and run at the destination -Java applets are example.
* Code suitable for running on one computer is not necessarily suitable for running on another because
executable programs are normally specific both to the instruction set and to the host operating system
* The virtual machine approach provides a way of making code executable on a variety of host computers
* Today, the most commonly used form of mobile code is the inclusion Javascript programs in some web pages
loaded into client browsers.
What is Code Migration?
Objectives
* Introduction of Code Migration.
* Dynamically Configuring a Client
What is Code Migration?
“Code migration in distributed computing refers to the process of transferring software code from one computer or
node in a network to another. This allows the code to be executed on the destination computer, which may have

better processing power, network connectivity, or other resources that are needed to perform a particular task. ”

83

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e Traditionally, code migration in distributed systems took place in the form of process migration in which an
entire process was moved from one machine to another.
¢ Code migration is a form of mobile code, which is a general term that refers to any code that can be
transferred from one system to another for execution. Code migration can be used in a variety of distributed
computing scenarios, such as distributed processing, load balancing, fault tolerance, and resource
optimization.
Code Migration: Motivation
* Performance
* Move code on a faster machine.
* Move code closer to data.
e Flexibility
* Allow to dynamically configure a distributed system.
Dynamically Configuring a Client
¢ The model of dynamically moving code from a remote site does require the protocol for downloading and
initializing code is standardized. Also, it is necessary that the downloaded code can be executed on the
client's machine. To allow remote clients to access the file system, the server makes use of a proprietary
protocol
* The server provide the client's implementation no sooner than is strictly necessary, that is, when the client
binds to the server. At that point, the client dynamically downloads the implementation, goes through the
necessary initialization steps, and subsequently invokes the server. This principle is shown in Figure.

Dynamically Configuring a Client

84

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

2. Client and server

. communicate
Client Server

BN

. . 1. Client fetches code
Service-specific

client-side code

Code repository
The principle of dynamically configuring a client to communicate to a server. The client first fetches the necessary
software, and then invokes the server.
Models for Code Migration
Objectives
* What are the Models for Code Migration?
* Code Migration and Local Resources.
Models for Code Migration
* Process model for code migration (Fugetta et al., 98)
* Code segment: set of instructions that make up the program
* Resource segment: references to external resources
* Execution segment: store current execution state
* Type of mobility
* Weak mobility: migrate only code segment

* Strong mobility: migrate execution segment and resource segment

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

85

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Execute at

Sender-initiated " target process

mobility . Execute in

N separate process
Weak mobility Execute at

Receiver-initiated .— target process
mobility . Execute in

separate process

/

Mobility mechanism

\

Strong mobility

Migrate process
Sender-initiated / J P

mobility ~—

Clone process

Migrate process
Receiver-initiated / 9 P

mobility
Clone process

Migration and Local Resources

* Types of process-to-resource binding
* Binding by identifier (e.g., URL, (IPaddr:Port))
* Binding by value (e.g., standard libraries)
* Binding by type (e.g., monitor, printer)

* Type of resources
* Unattached resources: can be easily moved (e.g., data files)
* Fastened resources: can be used but at a high cost (e.g., local databases, web sites)

* Fixed resources: cannot be moved (e.g., local devices

86

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Resource-to machine binding

f Unattached TFastened Fixed ?
Process-to- APy identifier | MV {or GR) GR {or MV GR
resource | By value CP(or MV, GR) |GR (or CP) GR
binding By type RE (or GR, CF) RE (or GR, CP) | RB {or GR)
L

Actions to be taken with respect to the references to
local resources when migrating code

GR.: establish a global system wide reference

MV: move the resource

CP: copy the value of resource

RB: rebind the process to locally available resource

Code Migration in Heterogeneous Systems
Objectives
* Code Migration in Heterogenous System.
* Weak Mobility in D'Agents
* Strong Mobility in D'Agents.
Code Migration in Heterogeneous Systems
* Maintain a migration stack in an independent format

» Migrate only at certain points in the program (e.g., before/after calling a procedure)

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Push marshalled

Local stack procedure call onto
operations B migration stack
—\f Local
Procedure B / variables B
Return label
(jump) to A
Call from Local Parameter
AtoB variables B values for B
Return addr Identification
»\ fromB for proc. B
Local
Parameter ables A
Push procedure values for B variables
call onto program Return label
stack Local stack to caller A
ti A
operations Parameter
I.‘Okflal A values for A
variables
Procedure A Identification
Return addr. for proc. A
from A
Migration
Program stack
stack (marshalled
data only)

Weak Mobility in D'Agents
A Tel agent in D'Agents submitting a script to a remote machine (adapted from [Gray ‘95])
proc factorial n {
if (Sn<1){return1;} #fac(l)=1
expr Sn * [factorial [expr Sn —1]] # fac(n) =n * fac(n — 1)
}
set number ... # tells which factorial to compute
set machine ... # identify the target machine
agent_submit Smachine —procs factorial —vars number —script {factorial Snumber }

agent_receive ... # receive the results (left unspecified for simplicity)
Strong Mobility in D'Agents
A Tel agent in D'Agents migrating to different machines where it executes the UNIX who command

(adapted from [Gray 95])

all_users Smachines

88

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

proc all_users machines {

nn

set list # Create an initially empty list

foreach m Smachines { # Consider all hosts in the set of given machines

agent_jump Sm # Jump to each host
set users [exec who] # Execute the who command
append list Susers # Append the results to the list
}
return Slist # Return the complete list when done
}
set machines ... # Initialize the set of machines to jump to
set this_machine # Set to the host that starts the agent

Create a migrating agent by submitting the script to this machine, from where
it will jump to all the others in Smachines.
agent_submit Sthis_machine —procs all_users

-vars machines

-script { all_users Smachines }

agent_receive ... #receive the results (left unspecified for simplicity)

Use of Virtual Machines to Handle the Heterogeneity
Objectives

e Virtual Machines to Handle the Heterogeneity.

e Migrating the Entire Memory Image

e Migrating Bindings to Local Resources
Use of Virtual Machines to Handle the Heterogeneity
“Virtual machines (VMs) can be a useful tool for handling heterogeneity in computing environments. VMs allow for
the creation of multiple virtualized instances of operating systems and applications, which can be run on a single
physical machine. This allows for the consolidation of multiple computing environments onto a single machine,
reducing the need for multiple physical machines with different configurations.”
Virtual machines (VMs) can be used to handle heterogeneity in distributed computing environments. In distributed
computing, different nodes in the network may have different hardware configurations, operating systems, and
software environments, which can make it challenging to develop and deploy applications that work consistently
across all nodes.
By using VMs, distributed computing systems can create virtualized instances of a consistent operating system and

application environment that can be deployed on any node in the network. This allows applications to be developed

89

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

and tested on a single virtualized environment and then deployed across multiple nodes in the network, without
needing to worry about the heterogeneity of the underlying hardware and software configurations.

In addition, VMs can be used to facilitate the migration of applications across different nodes in the network. For
example, if a node fails or needs to be replaced, the VM can be easily migrated to a new node with minimal

disruption to the application.

Let us consider one specific example of migrating virtual machines, as discussed in Clark et al. (2005). In this case, the

authors concentrated on real-time migration of a virtualized operating system, typically something that would be
convenient in a cluster of servers where a tight coupling is achieved through a single, shared local-area network.
Under these circumstances migration involves two major problems:
* Migrating the entire memory image.
* Migrating bindings to local resources
Migrating the Entire Memory Image
There are, in principle, three ways to handle migration:
* Pushing memory pages to the new machine and resending the ones that are later modified during the
migration process.
* Stopping the current virtual machine; migrate memory and start the new virtual machine.
* Letting the new virtual machine pull in new pages as needed, that is, let processes start on the new virtual
machine immediately and copy memory pages on demand.
Migrating Bindings to Local Resources
* Concerning local resources, matters are simplified when dealing only with a cluster server. First, because
there is a single network, the only thing that needs to be done is to announce the new network-to-MAC
address binding, so that clients can contact the migrated processes at the correct network interface.

* Finally, if it can be assumed that storage is provided as a separate tier, then migrating binding to files is

similarly simple. The overall effect is that, instead of migrating processes, we now actually see that an entire

operating system can be moved between machines.

Week 10

Introduction To Message Passing
Objectives
* Introduction to Message Passing.
* Message Passing Model
Introduction to Message Passing
Message passing is a method of communication in distributed systems where processes or objects exchange
messages with each other to share information or coordinate activities.”

Message Passing Model

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

90

* Message passing is the most commonly used parallel programming approach in distributed memory systems.

Here, the programmer has to determine the parallelism. In this model, all the processors have their own local

memory unit and they exchange data through a communication network.

* There are two main types of message passing: synchronous and asynchronous.

Processors use message-passing libraries for communication among themselves. Along with the data being sent,

the message contains the following components:

* The address of the processor from which the message is being sent.

* Starting address of the memory location of the data in the sending processor.

* Data type of the sending data.
* Data size of the sending data.

* The address of the processor to which the message is being sent.

» Starting address of the memory location for the data in the receiving processor.

Memory 1 Memory 2

Processor 1 Processor 2 coe

Memory n

Processor n

Communication Interconnect

The message passing model demonstrates the following characteristics:

* Aset of tasks that use their own local memory during computation. Multiple tasks can reside on the

same physical machine as well across an arbitrary number of machines.

* Tasks exchange data through communications by sending and receiving messages.

» Data transfer usually requires cooperative operations to be performed by each process. For example,

a send operation must have a matching receive operation.
What is Message Passing Interface (MPI)?
Objectives
* Understanding of Message Passing Interface (MPI).
* History and Versions of MPI.
Message Passing Interface

* Anprocess is (traditionally) a program counter and address space

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

91

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e Processes may have multiple threads (program counters and associated stacks) sharing a single address
space. MPIis for communication among processes, which have separate address spaces.

* Inter-process communication consists of:

* Synchronization
* Movement of data from one process’s address space to another’s.

Types of Parallel Computing Models:
» Data Parallel - the same instructions are carried out simultaneously on multiple data items (SIMD)
* Task Parallel - different instructions on different data (MIMD)
* SPMD (single program, multiple data) not synchronized at individual operation level
* SPMD is equivalent to MIMD since each MIMD program can be made SPMD (similarly for SIMD, but

not in practical sense.)
Message passing (and MPI) is for MIMD/SPMD parallelism. HPF is an example of the SIMD interface
e Standardized message passing library specification (IEEE):

* For parallel computers, clusters and heterogeneous networks.
* Not a specific product, compiler specification etc.
* Many implementations, MPICH, LAM, OpenMPI ...

¢ Portable, with Fortran and C/C++ interfaces.

* Many functions.

* Real parallel programming.

* Notoriously difficult to debug.

History and Versions of MPI

* From a programming perspective, message passing implementations commonly comprise a library of
subroutines that are imbedded in source code. The programmer is responsible for determining all
parallelism.

e Historically, a variety of message passing libraries have been available since the 1980s. These
implementations differed substantially from each other making it difficult for programmers to develop
portable applications.

* In 1992, the MPI Forum was formed with the primary goal of establishing a standard interface for message
passing implementations.

* Part 1 of the Message Passing Interface (MPI) was released in 1994. Part 2 (MPI-2) was released in 1996.

Both MPI specifications are available on the web at www.mcs.anl.gov/Projects/mpi/standard.html.

MPI is now the "de facto" industry standard for message passing, replacing virtually all other message passing
implementations used for production work. Most, if not all of the popular parallel computing platforms offer at
least one implementation of MPI. A few offer a full implementation of MPI-2.
For shared memory architectures, MPI implementations usually don't use a network for task communications.
Instead, they use shared memory (memory copies) for performance reasons.

Library Interface
92

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Objectives
e Library Message-Passing
e MPI Basics Program
Library Interface
MPI is a specification for the developers and users of message passing libraries. By itself, it is NOT a library - but
rather the specification of what such a library should be.
A message-passing library specifications
* Extended message-passing model.
* Not a language or compiler specification.
* Not a specific implementation or product.
e MPI provides a powerful, efficient, and portable way to express parallel programs.
¢ MPI was explicitly designed to enable libraries which may eliminate the need for many users to learn (much
of) MPI.
* Portable.
¢ Good way to learn about subtle issues in parallel computing.
MPI provides point-to-point communication.
Collective operations
* Barrier synchronization
* Gather/scatter operations
* Broadcast, reductions
Predefined and derived datatypes
Virtual topologies
C/C++ and Fortran bindings.
How big is the MPI library?
e Huge (125 Functions).
e Basic (6 Functions).
Where to get MPI library?
¢ Standard message-passing library includes best of several previous libraries.
* MPICH (WINDOWS / UNICES)
* http://www-unix.mcs.anl.gov/mpi/mpich/
* Open MPI (UNICES)
* http://www.open-mpi.org/
MPI Basics
Many parallel programs can be written using just these six functions, only two of which are non-trivial;
— MPI_INIT
— MPI_FINALIZE
-~ MPI_COMM_SIZE
93

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

return O;

Objectives

#include “mpi.h”

MPI_COMM_RANK
MPI_SEND
MPI_RECV

Skeleton MPI Program

—r

definitions and
by types.

T

‘/ Provides basic MPI

main(int argc, char**® arpgy)
Starts MPI
MPI Init(&argc, &ariv);
/¥ main part of the program */
/¥ Use MPI function call depend on your data
* partitioning and the parallelization architecture
v

Exits MPI

o

MPI Program Example

#include <stdio.h>

int main(int argc, char *argv[])

MPI_Init(&argc, &argv);
printf(“Hello, world!\n”);
MPI_Finalize();

Message Passing Programming Modes

What is Message Passing Programming?

Message Passing Programming Modes.

Message Passing Programming

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

94

» Distributed memory processes have access only to local data. The sender process
issues a send call, and the receiver process issues a matching receive call.

* The logical view of a machine supporting the message-passing paradigm consists of p
processes, each with its own exclusive address space.

* Each data element must belong to one of the partitions of the space; hence, data
must be explicitly partitioned and placed.

* Allinteractions (read-only or read/write) require cooperation of two processes — the
process that has the data and the process that wants to access the data

* These two constraints, while onerous, make underlying costs very explicit to the

programmer.
Processor 0 Processor 1
Memory Memory
Data »| Data
send (data) receive (data)

Message Passing Programming Modes
» Different communication modes that can be used for message passing programming
are:
* Synchronous/asynchronous
* Blocking/non-blocking

» Buffered/unbuffered
95

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Non-blocking: A routine is non-blocking if it is guaranteed to complete regardless of
external events (e.g., the other processors). Example: A send is non-blocking if it is
guaranteed to return whether or not there is a matching receive.

Blocking: A routine is blocking if its completion (return of control to the calling
routine) may depend on an external event (an event that is outside the control of the
routine itself). Example: A send is blocking if it does not return until there is a
matching receive.

* Asynchronous: A routine is asynchronous if it initiates an operation that happens
logically outside the flow of control of the calling process. The important practical
distinction is whether the program may be required to check for completion of the
operation before proceeding.

* Synchronous: A routine is synchronous if its operation happens within the flow of
control of the calling process.

» Buffered: A routine that uses buffered message passing is a program that sends and
receives messages using a buffer. In this mode, messages are queued in the buffer
until they are ready to be sent or received

* Unbuffered: A routine may be used to perform a specific message-passing task, such
as sending or receiving a message between two processes. Does not use a buffer.
Messages are sent and received immediately without any buffering. This mode is
useful when low latency is required.

Asynchronous/Synchronous Message Passing
Objectives
* Understanding of Synchronous Message Passing.
* Understanding of Asynchronous Message Passing.
Asynchronous/Synchronous Message Passing

* Message-passing programs are often written using the asynchronous or loosely

synchronous paradigmes.

* In the asynchronous paradigm, all concurrent tasks execute asynchronously.

96

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

* Inthe loosely synchronous model, tasks or subsets of tasks synchronize to
perform interactions. Between these interactions, tasks execute completely
asynchronously.

Synchronous Message Passing
* A synchronous communication is not complete until the message has been received.
* Completes once ack is received by sender.
* Communication upon synchronization
* Hoare’s Communicating Sequential Processes (1978).
* BLOCKING send and receive operations.

* Unbuffered communication.

» Several steps in protocol- synchronization, data movement, completion.

* Delays participating processes.

Synchronous Message Passing

Process P1 Process P2

send m to P2 » receive x from P1

Asynchronous Message Passing

* Asynchronous Communication: An asynchronous communication completes before
the message is received. It has three modes:

» Standard send: completes once the message has been sent, which may or may not
imply that the message has arrived at its destination.

» Buffered send: completes immediately, if receiver not ready, MPI buffers the message
locally.

* Ready send: completes immediately, if the receiver is ready for the message it will get
it, otherwise the message is dropped silently.

Asynchronous Message Passing

97

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* Buffered communication
* May increase concurrency (e.g. producer/consumer).
* May increase transit time.
* Send operation
* Send operation completes when message is completely copied to buffer.
* Generally non-blocking but will block if buffer is full
* Receive operation — two flavors
* BLOCKING
* Receive operation completes when message has been delivered.
* NON-BLOCKING
* Receive operation provides location for message.
* Notified when receive complete (via flag or interrupt).

Asynchronous Message Passing

Process P1
Buffering

send m to P2 |

Buffering
v Process P2

—>

receive X from P1

Benefits of the Message Passing Interface
Objectives
* Understanding of Benefits of MPI.
Benefits of the Message Passing Interface
» Standardization - MPI is the only message passing library which can be considered a
standard. It is supported on virtually all HPC platforms. Practically, it has replaced all

previous message passing libraries.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Portability - There is no need to modify your source code when you port your
application to a different platform that supports (and is compliant with) the MPI
standard

Performance Opportunities - Vendor implementations should be able to exploit
native hardware features to optimize performance.

Functionality - Over 115 routines are defined in MPI-1 alone.

Scalability- MPI is designed to scale to large numbers of processors, which makes it
well-suited for high-performance computing.

Availability - A variety of implementations are available, both vendor and public

domain.

Week 11

What is Thread?

Objectives

Introduction of Threading

Creating and Terminating Threads using POSIX API

What is Thread?

In general
“A long, thin strand of cotton, fibers etc.,”
In Computing

“A sequence of linked instructions”
movl S$S14, %eax
movl $10, %ebx

add %eax, %ebx

Threads in context of CPU Utilization:

“A thread is a basic unit of CPU utilization having...”

Thread ID
CPU Context
Stack
Priority

Errno.

Threads in context of process

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

99

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e Athread is a piece of code within the process
e Executes within the address space of a process

e Lightweight process

e Can be scheduled to run on a CPU as an independent unit and terminate

e Multiple threads can run simultaneously .

Single thread vs Multiple threads

code data files -
code data files
registers stack) , ;
registers registers registers
stack stack stack
thread —» g “4—— thread

Threads Example

W o - o -
Home Insert Page Layout Rel

o

= o : Calibri (Body) =~ 48 ~

Paste . ~ abe :
= 7 Format Painter B I U *a 7

Clipboard - Font |

Wealcome to Virtual

Word Processor

Background thread may check spelling and grammar

Another thread does periodic automatic backups of the file being edited

A third thread loads images from the hard drive, and

Foreground thread processes user input (keystrokes

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

100

Thread Model?
Objectives

* Introduction of Thread Model..

e Logical Machine Model of Threads
Thread Models

* Many to Many

* OnetoOne

* Many to One

i
S J

5 : ¢ { N

€, e— usarthiad 4 4

& 'l 4
i L i s
DR ORE ": I 3 | l-.H | kgl oo |' ¥ 4
e Nl NEE = R

d b .

What is Thread?
« Thread Example
for (row = 0; row < n; rowtt)
for (column = 0; column < n; columnt+)
c[row] [column] =
create thread(dot product(get row(a, row),
get col(b, col)));

W= L S =

(1

What is Thread?

All memory in the logical machine model of a thread is globally accessible to every thread

101

This document is available on § stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e] K- o

Shared Address Space

Logical Machine Model of Threads

Threads are invoked as function calls

= = =
o - B SRR Rt e~ .-
Shared Address Space
Thread API?
Objectives

* WhatIs Thread API?
* Thread Creation
The POSIX Thread API
A number of vendors provide vendor-specific thread APIs (NT threads, Solaris threads, Java threads, etc.)
The IEEE specifies a standard 1003.1c-1995, POSIX API, also referred to as Pthreads
POSIX has emerged as the standard threads API, supported by most vendors.

Thread Termination

102

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

A pthread is represented by the type pthread t.

sUspends the ¢g
Wait fDr suUc
of the th
first arg

lling thread to
cessful term ination
read specified as the
Ument pthread + thread

data passed from the

terminating thregq'

s call
o othread exjff)

Thread Creation

A pthread is represented by the type pthread_t.

int pthread _create(pthread t *thread,

Attributes 1o

pthread _attr t *attr] apply to this
thread

void *(*start_routine)(void *), void *arg);

The function Arguments to

this thread *PaEE _tﬂ thread
executes unction above

Why Thread?
Objectives
e Why Threads?

This document is available on ﬁ stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

103

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

¢ Characteristics of Threads
Why Thread?
Portability:

The possibility to use the same software in different environments

Window XP

Window 7

Window 10

Latency hiding

Multithreading enables latency reduction/hiding

Scheduling overhead synchronization overhead

l

-
—_
Sequential Thread Remote idle time
thread computation access

104

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

| Scheduling and Load Balancing l

Completed task
execution and

waiting for next

Ease of Programming
Threaded programs are significantly easier to write than corresponding programs using
message passing APIs.
Widespread Use
The widespread acceptance of the POSIX thread API, development tools for POSIX threads
are more widely available and stable.
Thread Synchronization
Objectives
* Introduction of Thread Synchronization
* Logical Machine Model of Threads.
What is the biggest challenge with using thread?
Communication is implicit in shared-address-space programming.
Much of the effort associated with writing correct threaded programs is spent on

synchronizing concurrent threads with respect to their data accesses or scheduling.

Synchronization
What will happen when multiple threads attempt to manipulate the same data item, if proper care is not taken to
synchronize?

Can results incoherent
105

This document is available on ﬁ stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Synchronization Primitives of threads
Consider:

if (my_cost < best_cost)

best_cost = my_cost;

best _cost =100

tl =50

t2 =75

After time interval T, the best_cost =?
Mutual Exclusion

The code in the previous example corresponds to a critical segment; i.e.,

“A segment that must be executed by only one thread at any time”.

* Critical segments in Pthreads are implemented using mutex locks
Mutex-locks have two states:.

* locked and

e Unlocked

At any point of time, only one thread can lock a mutex lock.
Synchronization Primitives of threads
e Alock is an atomic operation
e Athread entering a critical segment first tries to get a lock
e |t goes ahead when the lock is granted
Mutex Locks
Objectives
* What are Mutex Locks?
* Uses and types of mutex
Mutual Exclusion
The Pthreads API functions for handling mutex-locks:
e int pthread_mutex_lock (pthread_mutex_t *mutex_lock);

e int pthread_mutex_unlock (pthread_mutex_t *mutex_lock);
e int pthread_mutex_init (pthread_mutex_t *mutex_lock, const pthread_mutexattr_t
*lock_attr);
Producer-Consumer Using Mutex Locks

The producer-consumer scenario imposes the following constraints:

106

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

The producer thread must not overwrite the shared buffer when the previous task has not been picked up by a
consumer thread
The consumer threads must not pick up tasks until there is something present in the shared data structure
Individual consumer threads should pick up tasks one at a time.
Types of mutex

e A normal mutex

e Arecursive mutex

e Error check mutex
Conditional Variable
Objectives

* Problems with mutex

* Introduction to conditional Variable
Locking Overhead

e Performance issue

e Serialization issue
Locking overhead: Idling overheads

e Itis often possible to reduce the idling overhead associated with locks using an alternate function,

pthread_mutex_trylock

e Int pthread_mutex_trylock (pthread_mutex_t *mutex_lock);

* pthread_mutex_trylock is typically much faster than pthread_mutex_lock on typical systems
Conditional Variable in Synchronization
Problem with trylock:
trylock introduces the overhead of polling for availability of locks.
Solution:

Condition Variable
What is conditional variable?
“A condition variable is a data object used for synchronizing threads. This variable allows a thread to block itself until
specified data reaches a predefined state”,
Conditional Variable in Synchronization
A condition variable is associated with a predicate.
* When the predicate becomes true, the condition variable is used to signal one or more threads
waiting on the condition

A single condition variable may be associated with more than one predicate
A condition variable always has a mutex associated with it.
A thread locks this mutex and tests the predicate defined on the shared variable.
If the predicate is not true, the thread waits on the condition variable associated with the predicate using the

function:
107

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

pthread_cond_wait.

Pthreads functions for condition variables
e int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
e int pthread _cond_signal(pthread_cond_t *cond);

e int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);

e int pthread _cond_destroy(pthread_cond_t *cond);

e int pthread_cond_broadcast(pthread_cond_t *cond);

Week 12

Principles of Parallel Algorithm Design
Objectives

* Introduction to Parallel Algorithms.

e Key steps and units in the design of parallel algorithms
Parallel Algorithms
Algorithm: “A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of
steps”
Algorithms in which several operations may be executed simultaneously are referred to as parallel algorithms. In
general, a parallel algorithm can be defined as a set of processes or tasks that may be executed simultaneously and
may communicate with each other in order to solve a given problem.
What are the key steps in design of Parallel Algorithms?

* Assigning them to different processors for parallel execution

» Dividing a computation into smaller computations
What is decomposition?
“The process of dividing a computation into smaller parts, some or all of which may potentially be executed in
parallel, is called decomposition.”
What are task?
“Tasks are programmer-defined units of computation into which the main computation is subdivided by means of
decomposition.”
Types of tasks in term of interdependency?

¢ Dependent tasks

* Independent tasks

Example decomposition: Dense matrix-vector Multiplication

108

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

n-1
Task n

Task dependency graph
Objectives
e Introduction task dependency graph.
e Examples of task dependency graph
What is a task dependency graph?
e Decomposition can be illustrated in the form of a directed graph with:
¢ Nodes corresponding to tasks and
¢ Edges indicating that the result of one task is required for processing the next.
e Such agraph is called a task dependency graph.
Example of task dependency graph?

What is critical path length?
109

This document is available on ﬁ stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Example TDG: Database Query Processing:

A directed path in the task dependency graph represents a sequence of tasks that must be processed one

after the other

The longest such path determines the shortest time in which the program can be executed in parallel.

The length of the longest path in a task dependency graph is called the critical path length.

Consider the execution of the query:

“MODEL = ""CIVIC" AND YEAR = 2001 AND (COLOR = "GREEN" OR COLOR = ““WHITE)”

on the given database:

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

Example: Database Query Processing

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

110

. ID# | Year —

ID# | Model ID¥¢ | Calor

7623 | 2001 _ PO S

4523 | Cwvie 6734 201 it ¢ 1623 | Green

G734 | Civie 5342 HH s H;' - Colo { 19834 | Groen

4395 | Civic 845 | 2000 3476 | White | | 5342 | Green

7352 | Civie 4398 | 2000 [673% | White | 4354 | Green |

| Civic | - 2001 . White | Green|
_ ID# Color
ID# | Model |Year| __ \ ¥ . 2l el
g | a2 Fh i

6734 | Civic | 2001 Civic AND 2001 | ._White OR Green | 9834 | Green
4395 | Civic | 201 | 6734 | White
532 | Green
K354 _ Cereen

Civic AND 2001 AND (White OR Green) |

ID# | Model | Year| Color |
6734 | Civic | 2001 | White |

Granularity of Task Decompositions
Objectives
¢ Introduction granularity of task decomposition.
e Examples of granularity of task decomposition
Granularity of Task Decompositions (Task size)
Fined-grained
¢ Decomposition of computation into a large number of tasks results in fine-grained decomposition.
Coarse Grained

¢ Decomposition of computation into a small number of tasks results in a coarse grained decomposition

This document is available on § stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

111

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Example: Granularity of Tasks

Fine Grained Coarse Grained
o1 n 0 1 — n
2 Task 1
Task 2
Task 3
n-1 Task 4
Task n

Granularity of Task Decompositions (Concurrency)
¢ The number of tasks that can be executed in parallel is the degree of concurrency of a decomposition
¢ The maximum degree of concurrency is the maximum number of such tasks at any point or time during
execution.
e The average degree of concurrency is the average number of tasks that can be processed in parallel over the
execution of the program
Is there any limit on parallel performance?
¢ Do you think that finer decomposition of tasks always results in small time
¢ Thereis an inherent bound on how fine the granularity of a computation can be
¢ Concurrent tasks may also have to exchange data with other tasks.
e This results in communication overhead.
Decomposition Techniques
Objectives
e Classification of decomposition techniques.
* When to use what?
e What is recursive decomposition technique?
What are the decomposition techniques?
“There is no single recipe that works for all problems, we present a set of commonly used techniques that apply to
broad classes of
problems.”
Decomposition Techniques
* Recursive Decomposition
* Data Decomposition

112

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

e Exploratory Decomposition

¢ Speculative Decomposition

Recursive Decomposition

e Generally suited to problems that are solved using the divide-and-conquer strategy.

e Agiven problem is first decomposed into a set of sub-problems.

¢ These sub-problems are recursively decomposed further until a desired granularity is reached.

¢ Aclassic example of a divide-and-conquer algorithm on which we can apply recursive decomposition is

Quicksort.

Recursive Decomposition Example:Quicksort

5 (12|11 10 2
1/3/4]|2 12(11|10
112 3|4 8|7 12(11]10
1 2 3 78 10112| 11
7 10 1112
11 12
Recursive Decomposition Example: Finding Minimum Number
1. procedure RECURSIVE_MIN (A, n)
2. begin
3.if(n=1)then
4, min:=A[0] ;
5. else
6. Imin := RECURSIVE_MIN (A, n/2);
7. rmin := RECURSIVE_MIN (&(A[n/2]),n-n/2);
8. if (Imin < rmin) then
9. min := Imin;
10. else
11. min = rmin;
113

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

This document is available on $ stUd ocu

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

12. endelse;
13. endelse;
14. return min;

15. end RECURSIVE_MIN

Recursive Decomposition Example: Finding Minimum Number

min(1,2)

min(4,1) min(8,2)

min(4,9) min(1,7) min(8,11) min(2,12)

Example Set: {4,9,1,7,8,11,2,12}

Data Decomposition Technique
Objectives
* What is data decomposition technique
* What are different types of data decomposition?
What is the Data Decomposition Technique?
“Data decomposition is a powerful and commonly used method for deriving concurrency in algorithms that operate
on large data structures. In this method, the decomposition of computations is done in two steps.”
Data Decomposition Steps?
* Instep2, this data partitioning is used to induce a partitioning of the computations into tasks
* Instepl, the data on which the computations are performed is partitioned.
How to Decompose Data?
* Identify the data on which computations are performed.
» Partition this data across various tasks.
* This partitioning induces a decomposition of the problem.
» Data can be partitioned in various ways - this critically impacts performance of a parallel algorithm.
Decomposition based on Data Output
* Often, each element of the output can be computed independently of others (but simply as a function of the
input).

* A partition of the output across tasks decomposes the problem naturally.
114

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Output Data Decomposition: Example :

“Consider the problem of multiplying two n x n matrices A and B to yield matrix C. The output matrix C can be

partitioned into four tasks ”

Ay Ay Bix Bip b Ci1 Cip
Ay1 Ay By1 Bapo Ca1 Coo

Cia=A11B11 + A1 9Bs 4
Cr2=A11B12+ A1 285
Coq = A91B11 + Az 2854

Coa = Ag1B12+ Az 285
Aiq A By B L Cii1 Cip
A1 Ass J \ Ba1 By Co1 Cop

Cip=4A11B811+A12Bs;
Cia2=A11B12+ A12B2
Coq = A 1By 1+ Az2B2,
Cop = A 1B o+ Az2B5

Decomposition based on Input Data
The Generally applicable if each output can be naturally computed as a function of the input
In many cases, this is the only natural decomposition because the output is not clearly known a-priori (e.g.,
the problem of finding the minimum in a list, sorting a given list, etc.).
A task is associated with each input data partition. The task performs as much of the computation with its

part of the data. Subsequent processing combines these partial results.

Transactions (input), itemsets (input), and frequencies (output)

115

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

A BCEGH A B.C 1
B.DLE EF. K, L D.E Z 3
)
=
S ABEHL C.F.G g O
= u o
@ D,E.EH 2 AE o 2
b L
c E
e F.G.H. K, @ C,.D E’ 1
o =
@ A EEK L D.K E .2
o 8
8 B.C.D.G.H.L B.C.F Sl
[yl
L
S | GHL C.D.K 0
D.E. F. K, L
F.G . H L
Input Data Partitioning: Example
Partitioning the transactions among the tasks
w 7]
§ A,B,CEGH A,B,C 1 5 A,B,C 0
S B,D.EFKL D.E > 2 8 D,E > 1
%] = w [=
§ A.B.F.HL C,F,G g0 & C.F,G g0
[] = & [»n o
@ D,EF.H ® | AE 2 o AEFKL 2 AE 2o
8 5 £ = ® = a
2 FEGHK & CD 8 0 & B.CDGHL & GCD B 1
s D, K E 1 5 GHL D, K E, 1
B,C,F T 0 D,E F,K.L B.C,F T
C,D.K 0 F,G,HL C,D.K 0
task 1 task 2

Input and Output Data Partitioning: Example

Partitioning both transactions and frequencies among the

116

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

] w
£ A.B.C.E.G.H A.B.C L S ABCEGH
8§ B.D.EEK.L D.E 5 2 § B.D,EFK.L oy
w = =
8§ A.B.FHL 5 LEEG g0 8 ABFHL 3
— = @
e D,EFH % A.E o e e 2 8
o = o = = =
g FGHK o 3 r.‘: F.G. H.K. & CD B 0
s E T - E
= 5 = D.K g !
B.C.F 0
C.D.K 0
task 1 task 2
(1] w0
5 A.B.C 0 S
5 B 21| |5 g
& C.F.G S 0 8 @ 2
's AEFRKL s | AE 21| |'g AEERKL 3 g
8 B.C.D.G.H.L 5 B 2 B.C.D.G.H.L E C.D B o1
& GHL £ & G.H.L D.K S 1
D.E.F. K. L - D.E.F.K.L B.C.F R
F.G.H. L F,G.H.L C.D.K 0
task 3 task 4

Decomposition based on Intermediate Data
* Computation can often be viewed as a sequence of transformation from the input to the output data.
* Inthese cases, it is often beneficial to use one of the intermediate stages as a basis for decomposition.
The Owner Computes Rule
* The Owner Computes Rule generally states that the process assigned a particular data item is responsible for
all computation associated with it.
* Inthe case of input data decomposition, the owner computes rule implies that all computations that use the
input data are performed by the process.
¢ Inthe case of output data decomposition, the owner computes rule implies that the output is computed by
the process to which the output data is assigned.
Exploratory and Speculative Decomposition Techniques
Objectives
* What is exploratory decomposition technique
* What is speculative decomposition?
Exploratory Decomposition
“Exploratory decomposition is used to decompose problems whose underlying computations correspond to a search
of a space for solutions.”
Exploratory Decomposition
* In many cases, the decomposition of the problem goes hand-in-hand with its execution.

¢ These problems typically involve the exploration (search) of a state space of solutions.

117

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e Problems in this class include a variety of discrete optimization problems (0/1 integer programming, QAP,

etc.), theorem proving, game playing, etc.

Exploratory Decomposition Example:

11234 1|2 4 2134 11234
5164 |8 51678 6|78 506|178
[
9110|711 91(110| =11l 1011} 9110|1112
I
13{14|15|12 1314|1512 13(14|15|12 131415
(a) (b) () (d)
Exploratory Decomposition Example:
SHBE
ry N W
52 |s
task 1 task 2 task 3 task 4
S0 |wn|= S|e - S0 |w|= oo |w =
HEERE HEERE HEEE HEEE
glalw Gle] [» HEEE Gl |a]w
RS A I =SAEN Il NEN IS ® &
2o | [2] EERR] EERR EERl]] 1 EER] | ERl El =] el EERl] Eeak EER] Rk
Sl Bl el [Els] RERE BERE el EEL =] el EElr Bl EERE] LRl 5l 1= EE=-
Speculative Decomposition
“Speculative decomposition is used when a program may take one of many possible computationally significant
branches depending on the output of other computations that precede it.”
Speculative Decomposition
* In some applications, dependencies between tasks are not known a-priori.
* For such applications, it is impossible to identify independent tasks
* There are generally two approaches:
conservative approaches, and, optimistic approaches
118

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

e Conservative approaches may yield little concurrency and optimistic approaches may require roll-back

mechanism in the case of an error

Speculative Decomposition

Example: Discrete Event Simulation

System Inpuls
L
L]
i

Systerm Output

System Components

Hybrid Decompositions
* Often, a mix of decomposition techniques is necessary for decomposing a problem
* In quicksort, recursive decomposition alone limits concurrency (Why?). A mix of data and recursive
decompositions is more desirable
* Indiscrete event simulation, there might be concurrency in task processing. A mix of speculative
decomposition and data decomposition may work well

e Even for simple problems like finding a minimum of a list of numbers, a mix of data and recursive

decomposition works well.

Week 13

Introduction to Parallel I/O
Objectives
* Introduction of parallel I/0.
* Why Parallel I/0?
* 1/0O bottleneck
* 1/O Performance
What is parallel Input/Output (1/0)?
“A Parallel I/0O is the concurrent access to /O devices by multiple processes or threads.”
Why is Parallel I/O important?
« Parallel I/0 can significantly improve the performance of parallel applications that are I/0-bound
e This is because I/O operations can often be the bottleneck in parallel applications..

How Parallel 1/0 Work?

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

119

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

« Parallel 1I/0 uses multiple I/O devices to read or write data in parallel.
e This can be done by using multiple disks, multiple network interfaces, or a combination of both
1/0 bottleneck
There are three main reason for I/O bottleneck:
* Increasing CPU Speed as compared to I/O
* Increase in number of CPUs
* New application domains that increasing I/O demand
The 1/0 Challenge
* Problems are increasingly computationally challenging
* Large parallel machines needed to perform calculations
* Critical to leverage parallelism in all phases
e Data access is a huge challenge
* Using parallelism to obtain performance
* Finding usable, efficient, portable interfaces
* Understanding and tuning I/O
e Data stored in a single simulation for some projects
+ 100TB!
Scalability Limitation of 1/0
The most common I/O subsystems are typically very slow compared to other parts of a supercomputer
* —You can easily saturate the bandwidth:
Once the bandwidth is saturated scaling in I/O stops
* — Adding more compute nodes increases aggregate memory bandwidth and flops/s, but not 1/0
Factors which affect 1/0
e 1/Ois simply data migration.
* —Memory<—>Disk
e 1/0is a very expensive operation:
— Interactions with data in memory and on disk.
* How is /O performed?:
—1/0 Pattern
-- Number of processes and files
-- Characteristics of file access
e Where is I/O performed?:
— Characteristics of the computational system.
— Characteristics of the file system.
1/0 Performance
e There is no “One Size Fits All” solution to the 1/O problem.

e Many I/O patterns work well for some range of parameters

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

120

* Bottlenecks in performance can occur in many locations (Application and/or File system)

* Going to extremes with an I/O pattern will typically lead to problems

* Increase performance by decreasing number of I/O operations (latency) and increasing size (bandwidth).
Path from Application to File System
Objectives

* Data and Performance.

* —1/0 Patterns

¢ Lustre File System.

* 1/O Performance Results

Data Performance

Memory Memory Memory Memory

e

Disk Disk Disk Disk

1/0 Patterns: Serial 1/O
* One process performs /0.
e Data Aggregation or Duplication
* Limited by single I/O process.
* Simple solution, easy to manage, but
* Pattern does not scale.

* Time increases linearly with amount of data. -

* Time increases with number of processes.

1/O Patterns: Parallel 1/0 —
* All processes perform 1/0 to individual files.
o Limited by file system.
e Pattern does not scale at large process counts.
o Number of files creates bottleneck with metadata operations.

o Number of simultaneous disk accesses creates contention for file system resources.

121

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Parallel 1/O: Shared File
* Each process performs I/0 to a single file which is shared.
* Performance
* Data layout within the shared file is very important.

* At large process counts contention can build for file system resources.

Pattern Combinations
* Subset of processes which perform 1/0.
* Aggregation of a group of processes data.
* Serializes I/0 in group.
* 1/O process may access independent files.
* Limits the number of files accessed.

* Group of processes perform parallel I/0 to a shared file.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

122

* Increases the number of shared files
* Increase file system usage.
* Decreases number of processes which access a shared file

Decrease file system contention.

e

Performance Mitigation Strategies

* File-per-process I/O

* Restrict the number of processes/files written simultaneously.
- Limits file system limitation.
» Buffer output to increase the I/O operation size.
* Shared file I/O
* Restrict the number of processes accessing file simultaneously.
- Limits file system limitation.
e Aggregate data to a subset of processes to increase the |I/O operation size.
» Decrease the number of I/O operations by writing/reading strided data.

Parallel 1/0 Tools

Objectives
* Which tools can be used for Parallel I/0?
e Understanding of Parallel I/O Tools
Parallel 1/0 Tools
Collections of system software and libraries have grownup to address 1/0 issues:
* At Parallel file systems
e MPI-IO
* High level libraries
e Relationships between these are not always clear.
e Choosing between tools can be difficult.
Parallel 1/0 Tools: Break up
- Break up support into multiple layers:
* High level I/O library maps app. abstractions to a structured, portable file format (e.g. HDF5, Parallel
netCDF, ADIOS)
¢ Middleware layer deals with organizing access by many processes (e.g. MPI-10)
¢ Parallel file system maintains logical space, provides efficient access to data (e.g. Lustre)

* Application

123

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* Highlevel I/O library

* MPI-IO Implementation

e Parallel file system

. Storage Hardware

Parallel File System
Manage storage hardware
* Present single view
* Focus on concurrent, independent access
* Transparent: files accessed over the network can be treated the same as files on local disk by
programs and users

* Scalable

Parallel 1/O Tools: Overview of Kraken Lustre

12 DDN S2A9900
2.3 PB formatted
336 OSTs

i

nfiniband Direat
Connect

Metadata
RAID

9408

Compute Nodes

Service
Node

24 Service 24 Service
Node Node

Blades For Blades
OSSs For OSSs

File 1/0: Lustre File System
¢ Metadata Server (MDS) makes metadata stored in the MDT(Metadata Target) available to Lustre clients.
e Object Storage Server(0SS) provides file service, and network request handling for one or more local OSTs.
* Object Storage Target (OST) stores file data (chunks of files).

File 1/0: Lustre File System

124

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Lustre

Once a file is created, write operations take place directly between compute node processes (PO, P1, ...) and Lustre
object storage targets (OSTs), going through the OSSs and bypassing the MDS.

For read operations, file data flows from the OSTs to memory.

Each OST and MDT maps to a distinct subset of the RAID devices

125

This document is available on § stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Application

procasses
running on
compute e
nodes

Memory Memaory Memory Memory

bt :

High speed | |
network

o # i

PIOCESSES —_ -

funning on MDS 0SS0 O 0SSm
saryice —
nodes

10 channels

' Y Y Y !
=y Ee==eoe=srn
RAID MDT OST || OST OST || OST
Devices

Striping: Storing a single file across multiple OSTs

* Asingle file may be stripped across one or more OSTs (chunks of
e the file will exist on more than one OST).

¢ Advantages:

e -anincrease in the bandwidth available when accessing the file
e -anincrease in the available disk space for storing the file

¢ Disadvantage:
- increased overhead due to network operations and server contention
File Striping: Physical and Logical Views

* Four application processes write a variable amount of data sequentially within a shared file.

* This shared file is striped over 4 OSTs with 1 MB stripe sizes.

126

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

PO P1 P2 P3

mEcs

[

| |
I I I I

Offset OMB 1MiB 2MB 3MB 4MB 5MiB

* This write operation is not stripe aligned therefore some processes write their data to stripes used by other

processes.
* Some stripes are accessed by more than one process

* May cause contention !

PO P1 P2 P3

OSTO OST1 OSTZ2 OST3

Single writer performance and Lustre

This document is available on § stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

127

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Single Writer
Write Performance

120

100

80

1 MB Stripe
G0

m 32 MB Stripe

Write (MB/s)

40

20

1 2 4 16 32 654 128 160
Stripe Count

Single writer performance and Lustre
e 32 MB per OST (32 MB — 5 GB) and 32 MB Transfer Size
= Unable to take advantage of file system parallelism
= Access to multiple disks adds overhead which hurts performance
* Using more OSTs does not increase write performance. (Parallelism in Lustre cannot be exploit)
Stripe size and 1/O Operation size

Single Writer
Transfer vs. Stripe Size

140
120
100
@
)
% m32 MB Transfer
E m8 MB Transfer -
m 1 MB Transfer

1 2 4 8 16 32 64 128
Stripe Size (MB)

Single OST, 256 MB File Size
¢ Single OST, 256 MB File Size
e Performance can be limited by the process (transfer size) or file system (stripe size).
e Either can become a limiting factor in write performance.

¢ Observations:

128

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

e The best performance is obtained in each case when the 1/0 operation and stripe sizes are similar.
e Larger I/O operations and matching Lustre stripe setting may improve performance (reduces the
latency of I/0 op.)
Single Shared Files and Lustre Stripes
Layout #1:

Keeps data from a process in a contiguous block

Shared File Layout #1
32 MB
Proc. 1

32 MB
Proc. 2

32 MB
Proc. 3

32 MB
Proc. 4

32 MB
Proc. 32

Layout #2:

strides this data throughout the file

129

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Shared File Layout #2

1 MB
Proc. 1
1 MB
Proc. 2
1 MB
Repetition #1 Proc. 3
1 MB
Proc. 4

1 MB
Proc. 32

m Repetition #2 - #31
T viB

Proc. 1
1 MB
Proc. 2
1 MB
Repetition #32 Proc. 3
1 MB
Proc. 4

A

1 nMB

Layout #2 strides this data throughout the file Proc. 32

File Layout and Lustre Stripe Pattern

Single Shared File (32 Processes)
1 GB and 2 GB file

2000
1800
1600
1400
1200
1800 1 = 1 MB Stripe (Layout#1)
= 32 MB Stripe (Layout#1)
= 1 MB Stripe (Layout#2)

Write (MB/s)

Stripe Count

File Layout and Lustre Stripe Pattern
e A1 MB stripe size on Layout #1 results in the lowest performance due to OST contention. Each OST is
accessed by every process. (31.18 MB/s)
* The highest performance is seen from a 32 MB stripe size on Layout #1. Each OST is accessed by only one
process. (1788,98 MB/s
A 1 MB stripe size gives better performance with Layout #2. Each OST is accessed by only one process. However, the

overall performance is lower due to the increased latency in the write (smaller I/O operations). (442.63MB/s)
130

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Scalability: File Per Process

The 128 MB per file and a 32 MB Transfer size

File Per Process
Write Performance

—a
\]

000 J""‘A

—4—1 ME Stripe
6000

==32 MB Stripe
4000
2000

12000

10000

Write (MB/s)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Processes or Files

Scalability: File Per Process
Performance increases as the number of processes/files increases until OST and metadata contention hinder

performance improvements.
At large process counts (large number of files) metadata operations may hinder overall performance due to

0SS and OST contention.

Case Study: Parallel 1/0

s
-

A particular code both reads and writes a 377 GB file. Runs on 6000 cores.

131

This document is available on § stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

e —Total I/O volume (reads and writes) is 850 GB.
e —Utilizes parallel HDF5
e Default Stripe settings: count 4, size 1M, index -1.
. —1800 s run time (~ 30 minutes)
» Stripe settings: count -1, size 1M, index -1.
. — 625 s run time (~ 10 minutes)
Results
—66% decrease in run time
1/0 Scalabity
* Lostre
* Minimize contention for file system resources.
* A process should not access more than one or two OSTs.
» Decrease the number of I/O operations (latency).
* Increase the size of /O operations (bandwidth).
Scalability: Summary
e Serial I/O
* Isnotscalable.
e Limited by single process which performs I/O
* File per Process
e Limited at large process/file counts by:
Metadata Operations
File System Contention
* Single Shared File
* Limited at large process counts by file system contention
High Level Libraries
Objectives
* Understanding of High Level Libraries.
* POSIX Interface.
High Level Libraries
* Provide an appropriate
* abstraction for domain
* Block Multidimensional datasets
* Typed variables
* Attributes
e Self-describing, structured file Format
e Provide optimizations that middleware cannot

* Map to middleware interface

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

132

e —Encourage collective I/O
POSIX:
e POSIX interface is a useful, ubiquitous interface for building basic I/0 tools.
» Standard I/O interface across many platforms.
e open, read/write, close functions in C/C++/Fortran
¢ Mechanism almost all serial applications use to perform 1/O
* No way of describing collective access
e No constructs useful for parallel I/0.
* Should not be used in parallel applications if performance is desired !.
1/0 Libraries
¢ One of the most used libraries on Jaguar and Kraken.
e Many I/O libraries such as HDF5, Parallel NetCDF and ADIOS are built atop MPI-I0
* Such libraries are abstractions from MPI-IO
¢ Such implementations allow for higher information propagation to MPI-IO (without user intervention).
MPI-IO
Objectives
e Understanding of MPI-IO basics
* MPI-IO Interfaces
MPI-1/0 Basics
* The sending MPI-IO provides a low-level interface to carrying out parallel /0
* The MPI-IO API has a large number of routines.
* As MPI-IO is part of MPI, you simply compile and link as you would any normal MPI program.
* Facilitate concurrent access by groups of processes
— Collective I/O
— Atomicity rules
1/0 Interfaces: MPI-10 can be done in 2 basic ways
* Independent MPI-IO
* Forindependent I/O each MPI task is handling the 1/0 independently using non collective calls like
MPI_File_write() and MPI_File_read().
* Similar to POSIX I/0, but supports derived datatypes and thus noncontiguous data and non-uniform
strides and can take advantages of MPI_Hints
* Collective MPI-IO
* When doing collective I/O all MPI tasks participating in /0 has to call the same routines. Basic
routines are MPI_File_write_all() andMPI_File_read_all()
* This allows the MPI library to do 10 optimization
File MPI Collective Writes and Optimizations

When writing in collective mode, the MPI library carries out a number of optimizations

133

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* It uses fewer processes to actually do the writing
* Typically one per node

* It aggregates data in appropriate chunks before writing

Process 0 Process 1 Process 2 Process 3

Data Data Data
—
o 9 \‘\
- N
\\ \\< i
- T —

— —~—

\

v ¥

To disk To disk

Process 2
Aggregate Data

Process 0
Aggregate Data

MPI-10 Interaction with Lustre
Included in the Cray MPT library.
Environmental variable used to help MPI-10 optimize 1/0O performance:
* BackwarMPICH_MPIIO_CB_ALIGN Environmental Variable. (Default 2)
¢ MPICH_MPIIO_HINTS Environmental
e Can set striping_factor and striping_unit for files created with MPI-10.
» If writes and/or reads utilize collective calls, collective buffering can be utilized
(romio_cb_read/write) to approximately stripe align I/O within Lustre.
¢ man mpi for more information
* Buffered 1/0
Advantages:
* Aggregates smaller read/write operations into larger operations.
e Examples: OS Kernel Buffer and MPI-10 Collective Buffering.
¢ Disadvantage:
Requires additional memory for the buffer.
* Cantend to serialize I/O.

e (Caution:
134

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Frequent buffer flushes can adversely affect performance.

Case Study: Buffered 1/0

A post processing application writes a 1GB file
* This occurs from one writer, but occurs in many small write operations.
* —Takes 1080 s (~ 18 minutes) to complete
* 10 buffers were utilized to intercept these writes with 4 64 MB buffers.
 —Takes 4.5 s to complete. A 99.6% reduction in time
1/0 Best Practices
e Read small, shared files from a single task
e Small files (< 1 MB to 1 GB) accessed by a single process
e Medium sized files (> 1 GB) accessed by a single process
e Large files (>> 1 GB)
e Limit the number of files within a single directory
¢ Place small files on single OSTs
e Place directories containing many small files on single OSTs

* Avoid opening and closing files frequently
Week 14

Performance and Scalability
Objectives
* What is performance?
¢ Introduction to Analytical Modeling
What is Performance?
“Computation performance is a measure of how well a computer system can execute a given set of instructions. It
can be measured in terms of execution time, overhead, speedup, and cost among others.
Analytical Modeling — Basics
The parallel runtime of a program depends on the input size, the number of processors, and the communication
parameters of the machine.
A sequential algorithm is evaluated by its runtime (in general, asymptotic runtime as a function of input size).
¢ Analgorithm must therefore be analyzed in the context of the underlying platform.
¢ The asymptotic runtime of a sequential program is identical on any serial platform.
* The parallel runtime of a program depends on the input size, the number of processors, and the
communication parameters of the machine.
A number of performance measures are intuitive

Wall clock time - the time from the start of the first processor to the stopping time of the last processor in a parallel
135

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

ensemble. But how does this scale when the number of processors is changed of the program is ported to another
machine altogether?
How much faster is the parallel version?
This begs the obvious follow up question —
what's the baseline serial version with which we compare?
Can we use a suboptimal serial program to make our parallel program look .
Raw FLOP count - What good are FLOP counts when they don't solve a problem?
Sources of Overhead in Parallel Programs
Objectives
* Introduction Execution Overhead.
e Sources of Overhead in Parallel Programs
Sources of Overhead in Parallel Programs
e If l use two processors, should not my program run twice as fast?
¢ No - anumber of overheads, including wasted computation, communication, idling, and contention cause
degradation in performance.
e The execution profile of a hypothetical parallel program executing on eight processing elements.

e Profile indicates times spent performing computation (both essential and excess), communication, and idling.

Execution Time
0 s
Pl]
P2] |
P3 —
P =
P ||
P6 ||
i :]
B Essential/Excess Computation L] Interprocessor Communication
: Idling

¢ Inter-process interactions:
* Processors working on any non-trivial parallel problem will need to talk to each other.
¢ Idling:
Processes may idle because of load imbalance, synchronization, or serial components.

* Excess Computation:
* The difference in computation performed by the parallel program and the best serial program is the

excess computation overhead incurred by the parallel program.

136

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

* This is computation not performed by the serial version.
* This might be because the serial algorithm is difficult to parallelize, or that some computations are
repeated across processors to minimize communication.
Performance Metrics for Parallel Systems
Objectives
* Serial vs Parallel Performance
* Performance Metrics
Performance Metrics for Parallel Systems
* ltisimportant to study the performance of parallel programs with a view to determining the best algorithm,
evaluating hardware platforms, and examining the benefits from parallelism.
* A number of metrics have been used based on the desired outcome of performance analysis.
Performance Metrics for Parallel Systems: Execution Time
e Serial runtime of a program is the time elapsed between the beginning and the end of its execution on a
sequential computer.
e The parallel runtime is the time that elapses from the moment the first processor starts to the moment the
last processor finishes execution.

¢ We denote the serial runtime by Tsand the parallel runtime by Tp.

Performance Metrics: Total Parallel Overhead/Overhead function
* The total time collectively spent by all the processing elements over and above that required by the fastest
known sequential algorithm for solving the same problem on a single processing element.
* Let Tanbe the total time collectively spent by all the processing elements and Ts is the serial time.
* Tar - Tsis then the total time spend by all processors combined in non-useful work. This is called the total
overhead.
Performance Metrics: Total Parallel Overhead/Overhead function
The total time collectively spent by all the processing elements
Tai=pTer (p is the number of processors).
The overhead function (T,) is therefore given by
To=pTp-Ts
Performance Metrics for Parallel Systems: Speedup
Objectives
* Introduction to Speedup.
* Speedup Example
Performance Metrics for Parallel Systems: Speedup
“Speedup (S) is the ratio of the time taken to solve a problem on a single processor to the time required to solve the

same problem on a parallel computer with p identical processing elements”

137

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Performance Metrics: Example

e Consider the problem of adding n numbers by using n processing elements.

e Ifnisa power of two, we can perform this operation in log n steps by propagating partial sums up a logical

binary tree of processors.
e This figure illustrates the procedure for n = 16.
* The processing elements are labeled from 0 to 15.
¢ Similarly, the 16 numbers to be added are labeled from 0 to 15.

* The sum of the numbers with consecutive labels from i to j is denoted by ;.

¢ Each step shown in Figure consists of one addition and the communication of a single word.

9 10 1 12 13 14 IS

0] 2 3 4 5 3 ! b3
ofoReRoRoRoRoRoRoRoReRo ke oo RS
(a) Initial data distribution and the first communication step

5 [
1 v vl 15
“ 4

POO0OOOPOOOOOOO OO

5]

z

(b) Second communication step

" 15

I~

P

oRoReRoReRoRcReRoRoXc R R RO R R®

(c) Third communication step

5]
>

g

(ONONONONONONONONONONCRORCHCRON®)

(d) Fourth communication step

eis

-

ONONONONONONONONONONORONCHEORON®;

(¢) Accumulation of the sum at processing element () after the final communicatior

If an addition takes constant time, say, t.and communication of a single word takes time t + tu,
we have the parallel time
Tr=0 (log n)
* We know that Ts= 0 (n)
Speedup Sis given by $=0 (n/log n)

Performance Metrics: Speedup

e For agiven problem, there might be many serial algorithms available. These algorithms may have different

asymptotic runtimes and may be parallelizable to different degrees.

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

138

* For the purpose of computing speedup, we always consider the best sequential program as the baseline.
Performance Metrics: Speedup Example

* Consider the problem of parallel bubble sort.

* The serial time for bubble sort is 150 seconds.

* The parallel time for odd-even sort (efficient parallelization of bubble sort) is 40 seconds

e The speedup would appear to be 150/40 = 3.75.

* Butis this really a fair assessment of the system?

e What if serial quicksort only took 30 seconds? In this case, the speedup is 30/40 = 0.75. This is a more

realistic assessment of the system. .

Performance Metrics: Speedup Bounds

e Speedup can be as low as 0 (the parallel program never terminates).

¢ Speedup can never exceed the number of processing elements, p.
A speedup greater than p is possible only if each processing element spends less than time Ts / p solving the problem
In this case, a single processor could be time-slided to achieve a faster serial program, which contradicts our
assumption of fastest serial program as basis for speedup.
Performance Metrics: Super-linear Speedups

* The phenomenon when the speedup become greater than p is known as superlinear speedup.

* One reason for super linearity is that the parallel version does less work than corresponding serial algorithm.

Frocessing element 0 ' Processing clement |

Performance Metrics: Super-linear Speedups
Resource-based super-linearity:
e The higher aggregate cache/memory bandwidth can result in better cache-hit ratios, and therefore super-
linearity.
Example:
e A processor with 64KB of cache yields an 80% hit ratio. If two processors are used, since the problem
size/processor is smaller, the hit ratio goes up to 90%. Of the remaining 10% access, 8% come from local

memory and 2% from remote memory.

139

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

If DRAM access time is 100 ns, cache access time is 2 ns, and remote memory access time is 400ns, this corresponds

to a speedup of 2.43!
Performance Metrics: Efficiency
e Efficiency is a measure of the fraction of time for which a processing element is usefully employed

* Mathematically, it is given by

. p=S
T

Following the bounds on speedup, efficiency can be as low as 0 and as high as 1.

Performance Metrics: Super-linear Speedups

« The speedup of adding numbers on processors is given by

T
= log n

- Efficiency is given by

Cost of a Parallel System
e Costis the product of parallel runtime and the number of processing elements used (p x Tp).
* Cost reflects the sum of the time that each processing element spends solving the problem.
* A parallel system is said to be cost-optimal if the cost of solving a problem on a parallel computer is
asymptotically identical to serial cost.
* Since E=Ts/ p Tp, for cost optimal systems, E = O(1).
* Cost is sometimes referred to as work or processor-time product
Cost of a Parallel System: Example
e Consider the problem of adding numbers on processors
* We have, Tp=log n (for p = n).
¢ The cost of this system is given by p Tp = n log n.
¢ Since the serial runtime of this operation is @(n), the algorithm is not cost optimal.
Impact of Non-Cost Optimality

» Consider a sorting algorithm that uses n processing elements to sort the list in time (log n)?.

¢ Since the serial runtime of a (comparison-based) sort is n log n, the speedup and efficiency of this algorithm

are given by n /log n and 1 / log n, respectively.
* The p Te product of this algorithm is n (log n)2.
e This algorithm is not cost optimal but only by a factor of log n.
Impact of Non-Cost Optimality

* If p<n, assigning n tasks to p processors gives To=n (log n)?/ p

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

140

* The corresponding speedup of this formulation is
p/logn.
* This speedup goes down as the problem size n is increased for a given p !.
Scalability of Parallel Systems
Objectives
* The effect of Granularity on Performance
* Introduction to Scalability of Parallel Systems
Scaling Characteristics
Effect of Granularity on Performance
» Often, using fewer processors improves performance of parallel systems.
¢ Using fewer than the maximum possible number of processing elements to execute a parallel algorithm is
called scaling down a parallel system.
¢ A naive way of scaling down is to think of each processor in the original case as a virtual processor and to
assign virtual processors equally to scaled down processors.
* Since the number of processing elements decreases by a factor of n/ p, the computation at each processing
element increases by a factorofn/p
¢ The communication cost should not increase by this factor since some of the virtual processors assigned to a
physical processors might talk to each other.
This is the basic reason for the improvement from building granularity.
Scalability of Parallel Systems
Can we build granularity in the previous example in a cost-optimal fashion?
Each processing element locally adds its n / p numbers intime O (n/ p).
The p partial sums on p processing elements can be added in time ©(n /p).

A cost-optimal way of computing the sum of 16 numbers using four processing elements.

o7 ous

2 6 1014

s 91

0 4l 812 DR YD LD !

©© © @ 6 © ©® @

S N

(@ (b)

= = =0

OB ORONO @ ©® @ G
(©) (d)

Scaling Characteristics of Parallel Programs

The efficiency of a parallel program can be written as:
141

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

g Ts
Bm—=—
p pTp
ar
1
E=—7r.
llﬁ

Scaling Characteristics of Parallel Programs: Example
e Consider the problem of adding numbers on processing elements.

* We have seen that:

Tp — 2logp
el

= —
e 2logp

1
1 | 2plog p

i

* These expressions can be used to calculate the speedup and efficiency for any pair of n and p
* Plotting the speedup for various input sizes gives us:
e Speedup versus the number of processing elements for adding a list of numbers.

* Speedup tends to saturate and efficiency drops as a consequence of Amdahl's law

35
Linear
30
25
L0 n =512
15 n= 32()
y : 1 =192
s ’
10 -
7 * ¢ o n=64
5 w!
w
(0 - c - : = = :
() 5 10 15 20 25 30 35 40

Scaling Characteristics of Parallel Programs
¢ Total overhead function T, is a function of both problem size T; and the number of processing elements p.

* In many cases, To grows sub-linearly with respect to Ts

142

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

In such cases, the efficiency increases if the problem size is increased keeping the number of processing elements
constant.
For such systems, we can simultaneously increase the problem size and number of processors to keep efficiency
constant.

* We call such systems scalable parallel systems

* Recall that cost-optimal parallel systems have an efficiency of ©(1).

* Scalability and cost-optimality are therefore related.

A scalable parallel system can always be made cost-optimal if the number of processing elements and the

size of the computation are chosen appropriately.

Isoefficiency Metric of Scalability
Objectives
e Isoefficiency Metric
e Isoefficiency Metric Example
Isoefficiency Metric of Scalability
e Foragiven problem size, as we increase the number of processing elements, the overall efficiency of the
parallel system goes down for all systems.
* For some systems, the efficiency of a parallel system increases if the problem size is increased while keeping
the number of processing elements constant.
Isoefficiency Metric of Scalability
Variation of efficiency: (a) as the number of processing elements is increased for a given problem size; and (b) as the
problem size is increased for a given number of processing elements.

The phenomenon illustrated in graph (b) is not common to all parallel systems.

Fixed problem size (W) Fixed number of processors (p)

4 w

(a) (h)

* What is the rate at which the problem size must increase with respect to the number of processing elements
to keep the efficiency fixed?

This rate determines the scalability of the system. The slower this rate, the better.

143

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Before we formalize this rate, we define the problem size W as the asymptotic number of operations associated with

the best serial algorithm to solve the problem.

+ We can write parallel runtime as:

W + T,(W, p)
P

Tp

oC0

s} O
8- The resulting expression for speedup is

- Wp
W + T,(W.p)

« Finally, we write the expression for efficiency as:

W
W + To(W, p)
1
L+ To(W,p) /W

+ For scalable parallel systems, efficiency can be maintained at a fixed value (between 0
and 1) if the ratio T, / Wis maintained at a constant value.
+ For a desired value E of efficiency, 1

I L W)W
T,(W,p) _1-E
W E ’
. E
W = T,(W, p).
& (W, p)

— A

+ If K=E/(1-E) is a constant depending on the efficiency to be maintained, since T,
is a function of Wand p, we have:
W= KT,(W,p).

¢ The problem size W can usually be obtained as a function of p by algebraic manipulations to keep efficiency
constant.
e This function is called the isoefficiency function.
e This function determines the ease with which a parallel system can maintain a constant efficiency and hence
achieve speedups increasing in proportion to the number of processing elements
Isoefficiency Metric: Example
* The overhead function for the problem of adding n numbers on p processing elements is approximately 2p

logp.
Substituting T, by 2p log p, we get

144

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

W =K2plogp
* Thus, the asymptotic isoefficiency function for this parallel system is: ©(p log p)
e If the number of processing elements is increased from p to p’, the problem size (in this case, n) must be

increased by a factor of (p’ log p’) / (p log p) to get the same efficiency as on p processing elements.

Consider a more complex example where: To = p*/% + p?/ W3/

* Using only the first term of T, in Equation, we get
W K-p‘"”.
* Using only the second term, Equation yields the following relation
between Wand p: W o— Kpa Japy3/4
wl/4= Kp*/*
w = K'%°
» The larger of these two asymptotic rates determines the isoefficiency.
This is given by @(p?)
Isoefficiency Function and Performance metrics
Objectives
* Lower Bound and the Isoefficiency Function
* Degree of Concurrency and Isoefficiency Function
Cost-Optimality and the Isoefficiency Function

A parallel system is cost-optimal if and only if:
elp = 6(W)

From this, we have: W+ To(W) - (W)
To (W) =0O(W)

W=0(To (W, p))

If we have an isoefficiencv function f{p), then it follows that the relation
W = Q(fip)) must be satisfied to ensure the cost-optimality of a parallel
system as it is scaled up.
Lower Bound on the Isoefficiency Function
e For a problem consisting of W units of work, no more than W processing elements can be used cost-
optimally.
* The problem size must increase at least as fast as O(p) to maintain fixed efficiency; hence, Q(p) is the
asymptotic lower bound on the isoefficiency function.
Degree of Concurrency and the Isoefficiency Function

¢ The maximum number of tasks that can be executed simultaneously at any time in a parallel algorithm is

called its degree of concurrency

145

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

o If (W) is the degree of concurrency of a parallel algorithm, then for a problem of size W, no more than C(W)
processing elements can be employed effectively.
Degree of Concurrency and the Isoefficiency Function: Example
« Consider solving a system of n equations in n variables by using Gaussian elimination (W = ©(n3))
» The nvariables must be eliminated one after the other, and eliminating each variable requires ©(n?)
computations.
» At most O(n?) processing elements can be kept busy at any time.
« Since W = 0(n?) for this problem, the degree of concurrency C(W) is O(W??)
« Given p processing elements, the problem size should be at least Q(p*?) to use them all
Minimum Execution Time and Minimum Cost-Optimal Execution Time
e Often, we are interested in the minimum time to solution.
* We can determine the minimum parallel runtime To™" for a given W by differentiating the expression for Tp
w.r.t. p and equating it to zero.
. diprp =0
e If pois the value of p as determined by this equation, Tp(po) is the minimum parallel time.
Minimum Execution Time: Example
¢ Consider the minimum execution time for adding n numbers.
s T = §+Zlogp =0
» Setting the derivative w.r.t. p to zero, we have p =n/2
« Tp™m"=2logn
¢ (One may verify that this is indeed a min by verifying that the second derivative is positive).
* Note: that at this point, the formulation is not cost-optimal.
Minimum Cost-Optimal Parallel Time
e Let Tt pe the minimum cost-optimal parallel time.
* If the isoefficiency function of a parallel system is ©(f(p)) , then a problem of size W can be solved cost-
optimally if and only if W= Q(f(p)) .
* In other words, for cost optimality, p = O(f }(W)) .
* For cost-optimal systems, Tp= O(W/p) , therefore,

T

Tcast-apt _ 1
i Q(f ‘(H-"J) '

Minimum Cost-Optimal Parallel Time: Example

146

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Consider the problem of adding n numbers.

= From this, we have p=n/logn.

= At this processor count, the parallel runtime is:

T;Mt'opt - logn + log (—l i)
ogn

= 2logn — loglogn.

O(log n). This may not always be the case.

Asymptotic Analysis of Parallel Programs
Consider the problem of sorting a list of n numbers. The fastest serial programs for this problem run in time ©(n log
n). Consider four parallel algorithms, A1, A2, A3, and A4.

e Comparison of four different algorithms for sorting a given list of numbers. The table shows number of

processing elements, parallel runtime, speedup, efficiency and the pTe product.

Algorithm Al A2 A3 A4

P n? logn n Vn

Tp 1 n Vn Vvnlogn
S nlogn logn Vnlogn /n

E 107% 1 l‘z/gr_f 1

pl'p n? nlogn n'?® nlogn

Asymptotic Analysis of Parallel Programs
* If the metric is speed, algorithm A1l is the best, followed by A3, A4, and A2 (in order of increasing Tp).
e Interms of efficiency, A2 and A4 are the best, followed by A3 and A1.
¢ Interms of cost, algorithms A2 and A4 are cost optimal, A1 and A3 are not

e Itis important to identify the objectives of analysis and to use appropriate metrics!

Week 15

MapReduce
Objectives
* What is MapReduce?

¢ Usage of MapReduce.

147

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

What is MapReduce?

“MapReduce is a software framework which supports parallel and distributed computing on large data sets.”

MapReduce - Introduction
* Simple data-parallel programming model designed for:
* Scalability and
* Fault-tolerance
* Pioneered by Google
* Processes 200 petabytes of data per day (Updated 2022)
* Popularized by open-source Hadoop project
e Used at Yahoo!, Facebook, Amazon
What is MapReduce used for?
¢ At Google
* Index construction for Google Search
* Article clustering for Google News
» Statistical machine translation
* At Facebook
* Data mining
* Ad optimization
* Spam detection
* AtYahoo
* “Web map” powering Yahoo! Search
* Spam detection for Yahoo! Mail
MapReduce Usage In Research?
* InResearch
Astronomical image analysis (Washington)
Bioinformatics (Maryland)
Analyzing Wikipedia conflicts (PARC)
Natural language processing (CMU)

* Particle physics (Nebraska

* Ocean climate simulation (Washington)

How MapReduce work?

* MapReduce has three main phases:

* Map

e Sort

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

148

* Reduce

MapReduce Overview

(a)_ [] £
e s | e D
=\
fation
=RV . w
eS| e @
@ @ -
0 e S |/ e D
-
mies | e @
‘@
Map) §huffle/50rt) \Reduce)

MapReduce: Examples
Objectives.
¢ MapReduce example based on three phases.
* Five processing stages based MapReduce example.

MapReduce Example

(based on Three Phases)
The canonical MapReduce Example: Word Count

* Example corpus:

Jane likes toast with jam
Joe likes toast

Joe burnt the toast

MapReduce: Map (Slow Motion)

149

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Input

Map 3

Output

Joe
likes

toast

Jane
likes
toast
with

jam

bumt
the

toast

=
‘
T\

-
‘
/T\\

900 60

e
5 g
/ N\

¥
/ 1\
‘/“\i ‘
"\ _‘ S gy A

b

b 600

/

|

§hufﬂe/ Sort

S

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Input Output

Joe 1 | Reduce 1 | Joe 2 |
Joe 1 [Jane i)

[Jane 1 | Reduce 2 [likes 2|
likes 1 | Reduce 3 [toast 3|
likes 1 [with 1]
toast 1 | Reduce 4 | jam 1 |
toast 1 | burnt 1 |
toast 1 | the 1 |

[with 1 | Reduce 5

| jam 1 |Redncufv

[burat 1 | Reduce 7

[the 1 | Reduce

MapReduce logical data flow in 5 processing stages over successive (key, value) pairs.

Intermediate (key, val) pairs

Line offset Line content .
(kayt, val) Unique keys
Key | Value (key8, val) (key1, val)
Key | Value (key2, val) (key1, val)
H (key1, [val, val..]) (key, value))
e (sz.. va) 2
o]) <]
(2] : I5)]
(key8, val) (key8, [val, val..])
— (keyB, val) (key8, val)
Key _\I'_alue 3 : {:ey?. va:) Output
Input L MapReduce
library

MapReduce logical data in 5 processing stages : Example

Most people
ignore most poetry

Intermediate (key, val) pairs

I (most, 1) (ignore, 1) Unique keys
. (people, 1) (ignores, 1)
. (ignore, 1) (most, 1) (ignore, 1) —pf---=-- (ignore, 1)
’ ﬁmostt, 1)1) :mosl, :; (ignores, 1) ——p === mm== (ignores, 1)

oetry, ‘most,
(:»ostr,y 1) Sort (most 1) Group Most1IIN—Prmsgree- (most, 4)

. (poetry, 1) (people, 1) (people, 1,1) (people, 2)
- (ignores, 1) (people, 1) (poetry, 1,1) (poetry, 2)
« (most, 1) (poetry, 1)

| (people, 1) (poetry, 1)

MapReduce
Most poetry library

ignores most people

MapReduce Actual Data and Control Flow:

The main responsibility of the MapReduce framework is to efficiently run a user’s program on a distributed

This document is available on § stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

151

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

computing system.

Therefore, the MapReduce framework meticulously handle all processing steps like:

Data and Computation

Partitioning

e Determining the master and worker
e Reading the input data

e (Data Distribution

e Map and Combiner function

e Synchronization

e Communication

e Sorting and Grouping

e Reduce function

MapReduce Design Goals
* Scalability to large data volumes
e 1000’s of machines, 10,000’s of disks
* Cost-efficiency:
* Commodity machines (cheap, but unreliable)
* Commodity network
* Automatic fault-tolerance (fewer administrators),
* Easy to use (fewer programmers)
Hadoop
Objectives
* Introduction Hadoop.
* Key functions of Hadoop
What is Hadoop?
“Open source platform for distributed processing of large data. Hadoop is a simplified programming model that
make it easy to write distributed algorithms”
Key functions of Hadoop
* The Distribution of data and processing across machine
¢ Management of the cluster
Hadoop scalability
* Hadoop can reach massive scalability by exploiting a simple distribution architecture and coordination
model

* Huge clusters can be made up using (cheap) commodity hardware
152

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

A 1000-CPU machine would be much more expensive than 1000 single-CPU or 250 quad-core machines
B Cluster can easily scale up with little or no modifications to the programs
Hadoop Components
HDFS: Hadoop Distributed File System:
Abstraction of a file system over a cluster
Stores large amount of data by transparently spreading it on different machines
MapReduce
Simple programming model that enables parallel execution of data processing programs
Executes the work on the data near the data
In a nutshell:
HDFS places the data on the cluster and MapReduce does the processing work
Hadoop Principle
* Hadoop is basically a middleware platforms that manages a cluster of machines
* The core components is a distributed file system (HDFS)
* Files in HDFS are split into blocks that are scattered over the cluster

* The cluster can grow indefinitely simply by adding new nodes

Hadoop Components

MapReduce and Hadoop

rfHadtmp)

Hadoop and MapReduce

* MR works on (big) files loaded on HDFS
* Each node in the cluster executes the MR program in parallel, applying map and reduces phases on the
blocks it stores

¢ OQutput is written on HDFS
153

This document is available on § stUdocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

Hadoop

P P e e
MR MR MR MR

[| [| [| [|

HDFS HDFS HDFS HDFS

e =] = 11111 b |

Hadoop Goods & Bads
* Good for:
* Repetitive tasks on big size data
* Not Good for
* Replacing a RDMBS
* Complex processing requiring various phases and/or iterations
* Processing small to medium size data
GFS: Google File System
Objectives
* Introduction to GFS
e GFS Working Process
GFS: Google File System

e “GFS was built primarily as the fundamental storage service for Google’s search engine.

* As the size of the web data that was crawled and saved was quite substantial, Google needed a distributed

file system to redundantly store massive amounts of data on cheap and unreliable computers”

Why GFS?
e Component failures
* Component failures are the norm, not the exception
e Files are huge
* By traditional standards (many TB)
* Typically 1000 nodes & 300 TB
* Most mutations are mutations
* Not random access overwrite
¢ Co-Designing apps & file system
* GFS was co-designed with the applications using it
GFS: Design Assumptions?
* Must monitor & recover from comp failures
¢ Modest number of large files
* Workload:

* large streaming reads + small random reads

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

154

* Many large sequential writes
¢ Need semantics for concurrent

e High sustained bandwidth (More important than low latency)

GFS: Interface

Familiar
* Create, delete, open, close, read, write
* Novel
* Snapshot
* Low cost

* Record append

* Atomicity with multiple concurrent writes

GFS: Architecture

€4
oQ’q Master
7a
0,7/)’ -y
Client "—] = Chunk
A
< Server
Many Client “# F Many
- T Chunk
data only e
: °
b4 e
Server

GFS: Architecture details
Objectives
¢ What are the GFS Architecture Components functions?
e GFS implementation.
GFS Architecture: Master
Master
e Stores all metadata
* Namespace
* Access-control information
* Chunk locations
* ‘Lease’ management
* Heartbeats
* Having one master = global knowledge

» Allows better placement / replication

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

155

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

* Simplifies design
GFS Architecture: Chunk Servers
* Store all files
* In fixed-size chucks
* 64 MB
* 64 bit unique handle

e Triple redundancy

Chunk
Server

Chunk
Server

Chunk

Server

GFS Architecture
* Contact single master
* Obtain chunk locations
* Contact one of chunk servers

¢ Obtain data

Application (File name, chunk index) _y ffoo/bar
GFS dlient | » GFSmaster "" [k Dei)
< File namespace .
(Chunk handle, 4
chunk locations) 1 Legend:
—— Data messages
" | Instructions to chunkserver | » Control messages
(Chunk handle, byte range) v Chunkserver state | |
"| GFS chunkserver GFS chunkserver
Chunk data Linux file system Linux file system

Bl Bl

GFS Architecture: Master-> Metadata
* Master stores three types
* File & chunk namespaces
¢ Mapping from files 2 chunks
* Location of chunk replicas
Stored in memory

156

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

Kept persistent through logging
GFS Architecture: Master
Operations
* Replica placement
* New chunk and replica creation
* Load balancing
* Unused storage reclaim
GFS: Consistency Model
* All file namespace mutations are atomic
* Handled exclusively by the master
e Status of a file region can be
* Consistent: all clients see the same data
* Defined: all clients see the same data, which include the entirety of the last mutation
* Undefined but consistent: all clients see then same data but it may not reflect what any one
mutation has written
* Inconsistent
GFS: Leases and Mutation Order
* Master uses leases to maintain a consistent mutation order among replicas
* Primary is the chunkserver who is granted a chunk lease
» All others containing replicas are secondaries
* Primary defines a mutation order between mutations
* All secondaries follows this order
GFS Write Control & Dataflow

Mutation Order

- identical replicas

- File region may end up containing mingled fragments from different clients (consistent but undefined)

157

This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

4 step |

o Client [| Master

2
3

Secondary =
Replica A

l

Primary

6

N

"1 Replica

1 Legend:
—= Control

&
Secondary e A

ReplicaB =

GFS: Limitations

Custom designed
Only viable in a specific environment

Limited security

HDFS: Hadoop Distributed File System

Objectives

Introduction to HDFS
HDFS Blocks and Nodes.

HDFS: Background

At Google MapReduce operation are run on a special file system called Google File System (GFS) that is highly
optimized for this purpose.

GFS is not open source

Doug Cutting and Yahoo! reverse engineered the GFS and called it Hadoop Distributed File System (HDFS).
The software framework that supports HDFS, MapReduce and other related entities is called the project
Hadoop or simply Hadoop

This is open source and distributed by Apache

HDFS: Basic Features

Highly fault-tolerant

High throughput

Suitable for applications with large data sets
Streaming access to file system data

Can be built out of commodity hardware

HDFS: Basic Features

158

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

HHDFS was designed to be optimal in performance for a WORM (Write Once, Read Many times) pattern

HDFS is designed to run on clusters of general computers & servers from multiple vendors
HDFS: Blocks

* Files in HDFS are divided into block size chunks

* 64 Megabyte default block size

Block is the minimum size of data that it can read or write

Blocks simplifies the storage and replication process

Provides fault tolerance & processing speed enhancement for larger files
HDFS: Nodes

* HDFS clusters use 2 types of nodes
* Namenode (master node)

* Datanode (worker node)

HDFS: Nodes
* Namenode

* Manages the file system namespace

Namenode keeps track of the data nodes that have blocks of a distributed file assigned

Maintains the file system tree and the metadata for all the files and directories in the tree
* Stores on the local disk using 2 file forms
* Namespace Image
* Edit Log
HDFS: Namenode

Namenode holds the filesystem metadata in its memory

Namenode’s memory size determines the limit to the number of files in a filesystem
e But then, what is Metadata?
HDFS: Metadata

» Traditional concept of the library card catalogs
Categorizes and describes the contents and context of the data files

Maximizes the usefulness of the original data file by making it easy to find and use
Structural Metadata

Focuses on the data structure’s design and specification
Descriptive Metadata

Focuses on the individual instances of application data or the data content
HDFS: Metadata Types

* Structural Metadata

Focuses on the data structure’s design and specification
* Descriptive Metadata

Focuses on the individual instances of application data or the data content

159
This document is available on $ stUd ocu

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=cs621-handouts-complete

HDFS: Datanodes
* Workhorse of the filesystem
» Store and retrieve blocks when requested by the client or the namenode
* Periodically reports back to the namenode with lists of blocks that were stored
HDFS: Client Access
» (lient can access the filesystem (on behalf of the user) by communicating with the namenode and datanodes
» Client can use a filesystem interface similar to a POSIX (Portable Operating System Interface)) so the user
code does not need to know about the namenode and datanodes to function properly
HDFS: Namenode Failure
* Namenode keeps track of the datanodes that have blocks of a distributed file assigned
* Without the namenode, the filesystem cannot be used
* If the computer running the namenode malfunctions then reconstruction of the files (from the blocks on the
datanodes) would not be possible
* Files on the filesystem would be lost
HDFS: Namenode Failure Resilience
Namenode failure prevention schemes
* Namenode File Backup
* Secondary Namenode
HDFS
Hadoop 2.x Release Series HDFS Reliability Enhancements
* HDFS Federation
« HDFS HA (High-Availability)

160

Downloaded by Muhammad Kamran (muhammadkamranyar@gmail.com)

